[1] Sevcikova J, Goldbergova M P. Biocompatibility of NiTi alloys in the cell behaviour[J]. Biometals, 2017, 30(2): 163-169. [2] Asgarinia F, Parvizi S. 15-Biomedical applications of NiTi alloys[M]//Thomas S, Behera A, Nguyen T A. Nickel-Titanium Smart Hybrid Materials: From Micro- to Nano-structured Alloys for Emerging Applications (Micro and Nano Technologies). Elsevier, 2022: 297-325. [3] 周剑杰, 马凤仓, 刘 平, 等. 热处理对镍钛合金丝材超弹性和相变的影响[J]. 材料热处理学报, 2017, 38(12): 114-120. Zhou Jianjie, Ma Fengcang, Liu Ping, et al. Effects of heat treatment on superelasticity and phase transformation of nitinol shape memory alloy wires[J]. Transactions of Materials and Heat Treatment, 2017, 38(12): 114-120. [4] 王书晗, 王 健, 王晓炜, 等. 热处理对医用NiTi合金显微组织及相变行为的影响[J]. 中国医疗器械信息, 2016, 22(23): 6-9. Wang Shuhan, Wang Jian, Wang Xiaowei, et al. Influence of heat treatment on microstructure and phase transformation of NiTi medical used alloys[J]. China Medical Device Information, 2016, 22(23): 6-9. [5] 柏秋生. 热拉伸和退火处理对Ti-50.8Ni形状记忆合金丝材力学行为及组织的影响[D]. 镇江: 江苏大学, 2021. Bai Qiusheng. Effect of thermal tension and annealing on mechanical behavior and microstructure of Ti-50.8Ni shape-memory alloy wire[D]. Zhenjiang: Jiangsu University, 2021. [6] 刘丹瑛, 丁希凡, 陈 宏, 等. 不同直径NiTi形状记忆合金丝的相变和超弹性特性[J]. 上海金属, 2020, 42(3): 17-20. Liu Danying, Ding Xifan, Chen Hong, et al. Transformation and super-elasticity characteristics of NiTi shape memory alloy wires of different diameters[J]. Shanghai Metals, 2020, 42(3): 17-20. [7] 袁志山, 吴艳华, 王永辉, 等. 时效处理对钛镍合金丝材超弹性的影响[J]. 金属热处理, 2014, 39(11): 78-81. Yuan Zhishan, Wu Yanhua, Wang Yonghui, et al. Effect of aging on superelasticity of nickel-titanium shape memory alloy wires[J]. Heat Treatment of Metals, 2014, 39(11): 78-81. [8] Yang H, Sakai K, Shizuka H, et al. Experimental investigation of the effects of super-elasticity on the machinability of NiTi alloys[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(1): 581-593. [9] Philip T V, Beck P A. CSCL-type ordered structures in binary alloys of transition elements[J]. JOM, 1957, 209(10): 1269-1271. [10] Hara T, Ohba T, Otsuka K, et al. Phase transformation and crystal structures of Ti2Ni3 precipitates in Ti-Ni alloys[J]. JIM, 1997, 38(4): 277-284. [11] Vashishtha H, Collins D M. The influence of dislocations on B19′ and R-phase transformations in a NiTi shape memory alloy[J]. Scripta Materialia, 2025, 255: 116365. [12] Zhou Ting, Yu Chao, Kang Guozheng, et al. A crystal plasticity based constitutive model accounting for R phase and two-step phase transition of polycrystalline NiTi shape memory alloys[J]. International Journal of Solids and Structures, 2020, 193-194: 503-526. [13] Wang X, Verlinden B, VanHumbeeck J. Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys[J]. Intermetallics, 2015, 62: 43-49. [14] ittner P, Landa M, Lukáš P, et al. R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals[J]. Mechanics of Materials, 2006, 38(5/6): 475-492. [15] Xue D, Zhou Y, Ren X. The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy[J]. Intermetallics, 2011, 19(11): 1752-1758. [16] Timofeeva E E, Surikov N Y, Tagiltsev A I, et al. The orientation dependence of thermal and stress hysteresis at R-B19′ martensitic transformation in aged Ni50.6Ti49.4 single crystals[J]. Journal of Alloys and Compounds, 2020, 817: 152719. [17] Lin H C, Wu S K, Chou T S. Aging effect on the low temperature internal friction relaxation peak in a Ti49Ni51 alloy[J]. Journal of Alloys and Compounds, 2003, 355(1/2): 90-96. [18] Yuan Zhishan, Feng Zhaohua, Miao Weidong, et al. High damping capacity of a binary TiNi shape memory alloy[J]. Materials Science Forum, 2011, 687: 485-489. [19] Aghamiri S M S, Ahmadabadi M N, Raygan S, et al. The mechanical and thermal behaviors of heat-treated Ni-rich NiTi orthodontic archwires[J]. Journal of Materials Engineering and Performance, 2009, 18(5/6): 843-847. [20] Gherghescu I A, Tarcolea M, Jicmon G L, et al. Heat treatment influence upon precipitates chemical composition and transformation temperatures of a NiTi shape memory alloy[J]. Revista de Chimie, 2013, 64(4): 407-413. [21] Favier D, Liu Y, McCormick P G. Three stage transformation behaviour in aged NiTi[J]. Scripta Metallurgica et Materialia, 1993, 28(6): 669-672. [22] Jiang Fei, Liu Yinong, Yang Hong, et al. Effect of ageing treatment on the deformation behaviour of Ti-50.9at.%Ni[J]. Acta Materialia, 2009, 57(16): 4773-4781. [23] 赵石磊, 赵 昆, 王富文. NiTi基形状记忆合金相变温度的影响因素[J]. 有色金属工程, 2021, 11(2): 38-47. Zhao Shilei, Zhao Kun, Wang Fuwen. Influencing factors of phase transition temperature of NiTi-based shape memory alloy[J]. Nonferrous Metals Engineering, 2021, 11(2): 38-47. [24] Xu B, Sun Y, Yu C, et al. Effect of Ni4Ti3 precipitates on the functional properties of NiTi shape memory alloys: A phase field study[J]. International Journal of Plasticity, 2024, 177: 103993. [25] Lu H Z, Zhou Z J, Yang Y, et al. Effect of heat treatment on the microstructure and superelasticity of NiTi alloy via selective laser melting[J]. Journal of Materials Research and Technology, 2024, 30: 1044-1055. [26] Poletika T M, Girsova S L, Lotkov A I. Ti3Ni4 precipitation features in heat-treated grain/subgrain nanostructure in Ni-rich TiNi alloy[J]. Intermetallics, 2020, 127: 106966. [27] Antonín Dlouhý, Khalil-Allafi J, Eggeler G. On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys[J]. International Journal of Materials Research, 2004, 95(6): 518-524. [28] 贺志荣, 王 芳. 热处理对Ti-50.6Ni形状记忆合金相变和显微组织的影响[J]. 材料热处理学报, 2023, 44(5): 95-103. He Zhirong, Wang Fang. Effect of heat treatment on phase transformation and microstructure of Ti-50.6Ni shape memory alloy[J]. Transactions of Materials and Heat Treatment, 2023, 44(5): 95-103. [29] 石世威, 袁志山, 王永辉, 等. 热处理对镍钛合金组织和相变特性的影响[J]. 材料热处理学报, 2017, 38(2): 48-54. Shi Shiwei, Yuan Zhishan, Wang Yonghui, et al. Effect of heat treatment on microstructure and phase transformation behavior of NiTi shape memory alloys[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 48-54. [30] Du F, Deng L, Zhang M, et al. Mechanical response and phase transformation characteristics of R-phase NiTi shape memory alloy under high strain rate compression[J]. Materialstoday Communications, 2024, 39: 109353. [31] Tao C, Zhou G, Huang H, et al. Abnormal superelastic cyclic behavior and stress-induced martensitic transformation mechanism of NiTi alloy with R phase[J]. Journal of Materials Research and Technology, 2024, 29: 4146-4150. [32] Zhu J, Wu H H, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation[J]. Acta Materialia, 2021, 207: 116665. [33] Carbonaro D, Villa E, Gallo D, et al. Designing the mechanical behavior of NiTi self-expandable vascular stents by tuning the heat treatment parameters[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 158: 106653. [34] Özerim Gülcan, Anlaš Günay, Moumni Ziad. The effect of heat treatment on pseudoelastic behavior of spark plasma sintered NiTi[J]. Materialstoday Communications, 2022, 31: 103819. [35] Asgarinia F, Hashemi S M, Parvizi S. 5-Heat treatment of NiTi alloys[M]//Thomas S, Behera A, Nguyen T A. Nickel-Titanium Smart Hybrid Materials: From Micro- to Nano-structured Alloys for Emerging Applications (Micro and Nano Technologies). Elsevier, 2022: 69-101. |