[1] 张树利. “双碳”目标下燃煤机组深度调峰问题研究[J]. 广东电力, 2022, 35(7): 56-63. Zhang Shuli. Research on deep peak load regulation of coal-fired units under the double carbon goals[J]. Guangdong Electric Power, 2022, 35(7): 56-63. [2] 姜彩生, 姜 馨. 冬季供热机组深度调峰面临的问题探讨[C]//北京能源与环境学会. 2018火电灵活性改造及深度调峰技术交流研讨会论文集. 2018: 7. [3] 吴红良. 长期服役P22钢管道材料的性能及残余寿命评估[D]. 北京: 华北电力大学, 2018. [4] Chen B Z, Lv S Y, Shi W, et al. Review of reheat crack in welded joint of low alloy heat-resistant steels[J]. Key Engineering Materials, 2017, 730: 15-20. [5] 尚 亮. 12Cr1MoVG钢焊接粗晶区组织性能及热裂纹敏感性研究[D]. 西安: 西安理工大学, 2014. [6] 李 玲, 吴晓春. Cr3型压铸模具钢4Cr3Mo2V的CCT和TTT曲线[J]. 金属热处理, 2023, 48(4): 10-18. Li Ling, Wu Xiaochun. CCT and TTT curves of Cr3 type die casting steel 4Cr3Mo2V[J]. Heat Treatment of Metals, 2023, 48(4): 10-18. [7] 刘 干, 孔祥磊, 黄明浩, 等. 冷却速率对超高强度X90M管线钢相变行为的影响[J]. 金属热处理, 2024, 49(5): 162-167. Liu Gan, Kong Xianglei, Huang Minghao, et al. Effect of cooling rate on phase transformation behavior of ultra-high strength X90M pipeline steel[J]. Heat Treatment of Metals, 2024, 49(5): 162-167. [8] 高兴成, 吴博雅, 吴晓春. 4Cr5Mo2V热作模具钢的CCT曲线及碳化物沿晶析出温度测定[J]. 金属热处理, 2024, 49(9): 72-79. Gao Xingcheng, Wu Boya, Wu Xiaochun. Measurement of CCT curves and carbide intergranular precipitation temperature of 4Cr5Mo2V hot-working die steel[J]. Heat Treatment of Metals, 2024, 49(9): 72-79. [9] 蒋庆梅, 张小强, 陈礼清, 等. 1000 MPa级超高强钢的SH-CCT曲线及其热影响区的组织和性能[J]. 钢铁研究学报, 2014, 26(1): 47-51. Jiang Qingmei, Zhang Xiaoqiang, Chen Liqing, et al. SH-CCT diagram, microstructures and properties of heat-affected zone in a 1000 MPa grade extra high-strength steel[J]. Journal of Iron and Steel Research, 2014, 26(1): 47-51. [10] 张效宁, 景 益, 余 燕, 等. 核电站钢安全壳SA738Gr.B钢SH-CCT曲线的测定及分析[J]. 热加工工艺, 2013, 42(1): 156-159. Zhang Xiaoning, Jing Yi, Yu Yan, et al. Measurement and analysis on SH-CCT curves of SA738Gr.B steel for steel container of nuclear power station[J]. Hot Working Technology, 2013, 42(1): 156-159. [11] 陈英俊, 刘志芳. 海洋工程用钢E690的SH-CCT测定及组织转变研究[J]. 江西冶金, 2015, 35(5): 1-4. Chen Yingjun, Liu Zhifang. SH-CCT determination and organization transformation research for ocean engineering steel GRD.E690[J]. Jiangxi Metallurgy, 2015, 35(5): 1-4. [12] 丁玲飞, 张建林, 朱 平, 等. 12Cr2Mo1VR钢SH-CCT曲线测定及分析[J]. 焊接技术, 2021, 50(7): 16-19, 105-106. Ding Lingfei, Zhang Jianlin, Zhu Ping, et al. Measurement and analyze on SH-CCT curves of 12Cr2Mo1VR steel[J]. Welding Technology, 2021, 50(7): 16-19, 105-106. [13] 曹志龙, 朱 浩, 安同邦, 等. 1400 MPa级超高强钢SH-CCT曲线及其热影响区组织和性能[J]. 焊接学报, 2023, 44(8): 109-115, 135-136. Cao Zhilong, Zhu Hao, An Tongbang, et al. SH-CCT diagram and microstructure and properties of heat-affected-zone of 1400 MPa ultra high strength steel[J]. Transactions of the China Welding Institution, 2023, 44(8): 109-115, 135-136. [14] Lei X, Dong S, Huang J, et al. Phase evolution and mechanical properties of coarse-grained heat affected zone of a Cu-free high strength low alloy hull structure steel[J]. Materials Science and Engineering A, 2018, 718: 437-448. [15] Wang C, Wang M, Shi J, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science and Technology, 2007, 23(5): 659-664. [16] 张永林, 安同邦, 郑 庆, 等. 屈服强度1400 MPa级低合金超高强钢的SH-CCT曲线及其粗晶热影响区组织[J]. 焊接, 2023(2): 24-28, 37. Zhang Yonglin, An Tongbang, Zheng Qing, et al. The SH-CCT diagram and CGHAZ microstructure of 1400 MPa grade HSLA steel[J]. Welding and Joining, 2023(2): 24-28, 37. |