[1] 郑凯锋, 张 宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. Zheng Kaifeng, Zhang Yu, Heng Junlin, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 1-10. [2] Peng Tianen, Lian Zhiwei, He Bo, et al. Enhancing strength of an ultra-low-carbon weathering steel to 700 MPa by adjusting Ti content[J]. Journal of Iron and Steel Research International, 2022, 30: 1-11. [3] Lian Zhiwei, Peng Tianen, He Bo, et al. Insight on corrosion behavior of a Cu-P-Cr-Ni steel with different Ni contents by electrochemical and periodic immersion corrosion experiments[J]. Journal of Iron and Steel Research International, 2022, 30: 580-590. [4] 何国宁, 蒋 波, 何 博, 等. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 173-181. He Guoning, Jiang Bo, He Bo, et al. Development and research status of high strength weathering steel for container[J]. Materials Reports, 2022, 36(4): 173-181. [5] 刘晓翠, 张转转, 吴 耐, 等. 高强耐候钢加工成形性能分析及改善措施[J]. 中国冶金, 2020, 30(8): 56-59. Liu Xiaocui, Zhang Zhuanzhuan, Wu Nai, et al. Analysis and improvement measures of processing formability of high strength weathering steel[J]. China Metallurgy, 2020, 30(8): 56-59. [6] 彭天恩, 连智伟, 何 博, 等. 工艺参数对经济型耐候钢显微组织及硬化机理的影响[J]. 材料导报, 2022, 36(2): 188-193. Peng Tianen, Lian Zhiwei, He Bo, et al. Effect of process parameters on microstructure and hardening mechanism of economical weathering steel[J]. Materials Reports, 2022, 36(2): 188-193. [7] 何 博, 彭天恩, 胡学文, 等. Nb对高Ti耐候钢连续冷却后显微组织及硬度的影响[J]. 金属热处理, 2022, 47(8): 46-51. He Bo, Peng Tianen, Hu Xuewen, et al. Effect of Nb on microstructure and hardness of high Ti weathering steel after continuous cooling[J]. Heat Treatment of Metals, 2022, 47(8): 46-51. [8] Wu Hongyan, Du Linxiu, Ai Zhengrong, et al. Static recrystallization and precipitation behavior of a weathering steel microalloyed with vanadium[J]. Journal of Materials Science and Technology, 2013, 29(12): 1197-1203. [9] 李雄杰, 何 博. 铌钛微合金化550 MPa级高强耐候钢的开发[J]. 江西冶金, 2022, 42(2): 24-29. Li Xiongjie, He Bo. A study on the development of Nb-Ti microalloyed 550 MPa high strength weathering steel[J]. Jiangxi Metallurgy, 2022, 42(2): 24-29. [10] 周 聪, 张晨洋, 李运鑫, 等. Ti微合金化700 MPa级集装箱用耐候钢的组织性能[J]. 材料热处理学报, 2020, 41(7): 126-133. Zhou Cong, Zhang Chenyang, Li Yunxin, et al. Microstructure and properties of Ti microalloyed 700 MPa weathering steel for container[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 126-133. [11] 刘晓翠, 张转转, 李文远, 等. 极限规格热轧高强耐候钢的开发[J]. 轧钢, 2019, 36(4): 31-34. Liu Xiaocui, Zhang Zhuanzhuan, Li Wenyuan, et al. Development of limit gauge of high strength atmospheric corrosion resisting steel strip[J]. Steel Rolling, 2019, 36(4): 31-34. [12] 夏佃秀, 孙 浩, 王 钧, 等. 终轧温度对09CuPTiRE耐腐蚀钢板组织和性能的影响[J]. 宽厚板, 2006, 12(1): 1-4. Xia Dianxiu, Sun Hao, Wang Jun, et al. Influence of final rolling temperature on the structure and properties of corrosion-resisting 09CuPTiRE plate[J]. Wide and Heavy Plate, 2006, 12(1): 1-4. [13] 宋仁伯, 文新理, 张永坤. Nb-B复合高强度集装箱板的组织与性能[J]. 材料科学与工艺, 2011, 19(3): 106-112. Song Renbo, Wen Xinli, Zhang Yongkun. Microstructure and property of high strength container plate compounded with Nb-B[J]. Materials Science and Technology, 2011, 19(3): 106-112. [14] Song Liying, Gao Xihua, Xue Qihe, et al. Effect of cooling rate and coiling temperature on microstructure and precipitation behavior of a 700 MPa weathering steel[J]. Journal of Materials Engineering and Performance, 2022, 31(12): 10225-10236. [15] Singh P P, Ghosh S, Mula S. Strengthening behaviour and failure analysis of hot-rolled Nb plus V microalloyed steel processed at various coiling temperatures[J]. Materials Science and Engineering A, 2022, 859: 144210. [16] 郭 飞, 郑成武, 王 培, 等. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501. Guo Fei, Zheng Chengwu, Wang Pei, et al. Effect of rare earth elements on austenite-ferrite phase transformation kinetics of low carbon steels[J]. Chinese Journal of Materials Research, 2023, 37(7): 495-501. [17] 杨 平, 郝广瑞, 崔凤娥, 等. 20Mn钢降温连续形变过程铁素体的形成特点及动态CCT曲线[J]. 钢铁研究, 2002, 30(5): 7-10. Yang Ping, Hao Guangrui, Cui Feng'e, et al. Ferrite formation in continuous cooling and deformation and its dynamic curves for steel 20Mn[J]. Research on Iron and Steel, 2002, 30(5): 7-10. [18] 彭宁琦, 唐广波, 刘正东. 奥氏体高温转变区二段冷却速率对铁素体相变的影响[J]. 材料工程, 2013(9): 11-15. Peng Ningqi, Tang Guangbo, Liu Zhengdong. Effect of two-stage cooling rate on austenite-ferrite phase transformation in high temperature transition region[J]. Journal of Materials Engineering, 2013(9): 11-15. [19] 张 熙, 李德强. 一种含Nb、Ti微合金钢的连续冷却相变行为[J]. 钢铁钒钛, 2011, 32(4): 16-21. Zhang Xi, Li Deqiang. Continuous cooling transformation of a kind of Nb-Ti microalloyed steel[J]. Iron Steel Vanadium Titanium, 2011, 32(4): 16-21. [20] Garcia-Mateo C, Caballero F G, Bhadeshia H, et al. Mechanical properties of low-temperature bainite[J]. Materials Science Forum, 2005, 495: 500-501. [21] He Shihui, He Binbin, Zhu Kongyi, et al. Evolution of dislocation density in bainitic steel: Modeling and experiments[J]. Acta Materialia, 2018, 149: 46-56. [22] 王洪东, 周 旬, 徐永先, 等. 铁素体区轧制低碳钢的显微组织和力学性能[J]. 上海金属, 2024, 46(6): 23-28. Wang Hongdong, Zhou Xun, Xu Yongxian, et al. Microstructure and mechanical properties of low-carbon steel rolled in ferrite region[J]. Shanghai Metals, 2024, 46(6): 23-28. [23] 高韩锋, 李晓源, 韩 赟, 等. 轧制工艺对Ti微合金化马氏体钢力学性能的影响[J]. 钢铁, 2013, 48(11): 53-56. Gao Hanfeng, Li Xiaoyuan, Han Yun, et al. Effect of hot rolling process on mechanical properties of Ti-microalloyed martensitic steel[J]. Iron and Steel, 2013, 48(11): 53-56. [24] 商建辉, 王先进, 蒋冬梅, 等. 卷取温度对Ti-IF钢第二相粒子及晶粒尺寸的影响[J]. 钢铁, 2002, 37(3): 43-47. Shang Jianhui, Wang Xianjin, Jiang Dongmei, et al. Effect of coiling temperature on precipitation behavior of second-phase particles and grain sizes in Ti-IF steel[J]. Iron and Steel, 2002, 37(3): 43-47. [25] 王小江, 孙新军, 李昭东, 等. 卷取温度对高Nb微合金钢组织、力学性能及第二相析出的影响[J]. 材料工程, 2016, 44(2): 35-42. Wang Xiaojiang, Sun Xinjun, Li Zhaodong, et al. Effect of coiling temperature on microstructure, mechanical properties and second phase precipitation behavior of high Nb microalloying steel[J]. Journal of Materials Engineering, 2016, 44(2): 35-42. |