[1] 胡壮麒, 刘丽荣, 金 涛, 等. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31(3): 1-7. Hu Zhuangqi, Liu Lirong, Jin Tao, et al. Development of the Ni-based single crystal superalloy[J]. Aeroengine, 2005, 31(3): 1-7. [2] Lv P S, Liu L R, Yang Y H, et al. Role of microstructural stability and superdislocation shearing on creep behavior of two low-cost Ni-based single crystal superalloys at 1100 ℃/130 MPa[J]. Materials Science and Engineering A, 2023, 888: 145796. [3] 郭媛媛, 刘晨光, 张 迈, 等. 一种低铼镍基单晶高温合金在长期时效过程中的组织演化[J]. 铸造, 2022, 71(7): 821-826. Guo Yuanyuan, Liu Chenguang, Zhang Mai, et al. Microstructural evolution of a kind of nickel base single crystal superalloy with low content of rhenium during long term aging[J]. Foundry, 2022, 71(7): 821-826. [4] Paraschiv A, Matache G, Puscasu C. The effect of heat treatment on the homogenization of CMSX-4 single-crystal Ni-Based superalloy[J]. Transportation Research Procedia, 2018, 29: 303-311. [5] 周章瑞, 吕培森, 赵国旗, 等. 两种“W替Re”型低成本第二代镍基单晶高温合金的高温持久变形机制[J]. 材料研究学报, 2023, 37(5): 371-380. Zhou Zhangrui, Lü Peisen, Zhao Guoqi, et al. Stress rupture deformation mechanism of two "replacement of Re by W" type low-cost second generation nickel based single crystal superalloys at elevated temperatures[J]. Chinese Journal of Materials Research, 2023, 37(5): 371-380. [6] 曲怀璞, 徐巧至, 王 栋, 等. 小角度晶界对单晶高温合金N5持久性能的影响[J]. 铸造, 2023, 72(2): 115-119. Qu Huaipu, Xu Qiaozhi, Wang Dong, et al. Effect of low angle grain boundaries on rupture properties of single crystal superalloy N5[J]. Foundry, 2023, 72(2): 115-119. [7] 陈瑞志, 刘丽荣, 郭圣东, 等. 一种6Re/3Ru镍基单晶高温合金微观组织的稳定性和高温持久性能[J]. 材料研究学报, 2023, 37(10): 721-730. Chen Ruizhi, Liu Lirong, Guo Shengdong, et al. Microstructural stability and stress rupture property of a 6Re/3Ru containing nickel-based single crystal superalloy[J]. Chinese Journal of Materials Research, 2023, 37(10): 721-730. [8] 赵 乐, 刘丽荣, 田素贵. 新型Ni3Al基单晶高温合金的显微组织和拉伸性能[J]. 机械工程材料, 2022, 46(11): 33-37. Zhao Le, Liu Lirong, Tian Sugui. Microstructure and tensile properties of new Ni3Al based single crystal superalloy[J]. Materials for Mechanical Engineering, 2022, 46(11): 33-37. [9] 林万明, 段剑锋, 王春龙, 等. 高温时效对高温镍基合金沉淀强化的影响[J]. 金属热处理, 2008, 33(12): 66-68. Lin Wanming, Duan Jianfeng, Wang Chunlong, et al. Influence of high temperature aging on precipitation strengthening of Ni-based superalloy[J]. Heat Treatment of Metals, 2008, 33(12): 66-68. [10] Lang F Q, Narita T. Improvement in oxidation resistance of a Ni3Al-based superalloy IC6 by rhenium-based diffusion barrier coatings[J]. Intermetallics, 2006, 15(4): 599-606. [11] 赵海根, 李树索, 裴延玲, 等. Ni3Al基单晶合金IC21的微观组织及力学性能[J]. 金属学报, 2015, 51(10): 1279-1287. Zhao Haigen, Li Shusuo, Pei Yanling, et al. Microstructure and mechanical properties of Ni3Al-based single crystal alloy IC21[J]. Acta Metallurgica Sinica, 2015, 51(10): 1279-1287. [12] Kong Z G, Li S S. Effects of temperature and stress on the creep behavior of a Ni3Al base single crystal alloy[J]. Progress in Natural Science: Materials International, 2013, 23(2): 205-210. [13] 李一飞. 一种第三代镍基单晶高温合金蠕变各向异性的研究[D]. 合肥: 中国科学技术大学, 2019. [14] Han G M, Yu J J, Sun Y L, et al. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99[J]. Materials Science and Engineering A, 2010, 527(21/22): 5383-5390. [15] Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-base superalloy CMSX-4[J]. Acta Materialia, 1996, 44(5): 1967-1977. [16] 王开国, 李嘉荣, 刘世忠, 等. DD6单晶高温合金760 ℃的蠕变性能研究[J]. 材料工程, 2004(5): 7-11. Wang Kaiguo, Li Jiarong, Liu Shizhong, et al. Study on creep properties of single crystal superalloy DD6 at 760 ℃[J]. Journal of Materials Engineering, 2004(5): 7-11. [17] Su Y, Tian S G, Yu H C, et al. Microstructure evolution and its effect on creep behavior of single crystal Ni-based superalloys with various orientations[J]. Materials Science and Engineering A, 2016, 668: 243-254. [18] 蒋立武, 窦学铮, 武美伶, 等. 980 ℃/230 MPa下IC6SX单晶合金蠕变行为的各向异性研究[J]. 稀有金属, 2021, 45(5): 632-640. Jiang Liwu, Dou Xuezheng, Wu Meiling, et al. Creep anisotropy of single crystal alloy IC6SX at 980 ℃/230 MPa[J]. Chinese Journal of Rare Metals, 2021, 45(5): 632-640. [19] Jiang L W, Yang Y, Wu M L, et al. Study on the creep behavior of a Ni3Al-Based single crystal alloy at 850 ℃/450 MPa[J]. International Journal of Photoenergy, 2020, 2020: 8818136. [20] Jácome L A, Nörtershäuser P, Heyer J K. High-temperature and low-stress creep anisotropy of single-crystal superalloys[J]. Acta Materialia, 2013, 61: 2926-2943. [21] Li Y M, Tan Z H, Wang X G, et al. Stress rupture anisotropy of a Ru-containing fourth-generation single crystal superalloy at 760 ℃ and 1100 ℃[J]. Materials Science and Engineering A, 2022, 856: 144006. [22] 苏 勇. 不同取向某种镍基单晶合金的蠕变行为及影响因素[D]. 沈阳: 沈阳工业大学, 2015. [23] Liu J L, Jin T, Sun X F, et al. Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures[J]. Materials Science and Engineering A, 2007, 479(1): 277-284. [24] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567. Zhang Zixuan, Yu Jinjiang, Liu Jinlai. Anisotropy of stress rupture property of Ni base single crystal superalloy DD432[J]. Acta Metallurgica Sinica, 2023, 59(12): 1559-1567. |