[1] 杨少朋, 胡芳忠, 尉文超, 等. Nb微合金化对渗碳齿轮钢组织演变及接触疲劳性能的影响[J]. 表面技术, 2022, 51(1): 358-367. Yang Shaopeng, Hu Fangzhong, Yu Wenchao, et al. Effect of niobium microalloying on microstructure evolution and rolling contact fatigue properties of carburized gear steels[J]. Surface Technology, 2022, 51(1): 358-367. [2] 陈立佳, 潘卫东, 耿 新, 等. 稀土对渗碳层组织及性能的影响[J]. 沈阳工业大学学报, 1997, 19(2): 83-87. Chen Lijia, Pan Weidong, Geng Xin, et al. Influence of rare-earth on microstructure and performance of carburized layer[J]. Journal of Shenyang University of Technology, 1997, 19(2): 83-87. [3] 江志华, 佟小军, 孙 枫, 等. 13Cr4Mo4Ni4VA钢复合化学热处理过程渗层组织性能演变[J]. 航空材料学报, 2011, 31(3): 40-45. Jiang Zhihua, Tong Xiaojun, Sun Feng, et al. Evolution of microstructures and properties during duplex thermochemical processing of 13Cr4Mo4Ni4VA steel[J]. Journal of Aeronautical Materials, 2011, 31(3): 40-45. [4] 陈德华, 滕鲁湘, 李光瑾, 等. 渗碳淬硬层残余应力的分布特征[J]. 热处理, 2011, 26(2): 65-71. Chen Dehua, Teng Luxiang, Li Guangjin, et al. Distribution characteristics of residual stress in carburized and hardened case[J]. Heat Treatment, 2011, 26(2): 65-71. [5] 陈 玲, 魏沛堂, 刘怀举, 等. 齿轮接触疲劳微观结构作用研究综述[J]. 机械传动, 2022, 46(1): 1-18. Chen Ling, Wei Peitang, Liu Huaiju, et al. Review on the effect of microstructure on gear contact fatigue[J]. Journal of Mechanical Transmission, 2022, 46(1): 1-18. [6] 曹志刚, 刘世军, 李俞峰, 等. 渗碳淬火工艺齿轮内部残余应力状态有限元仿真研究[J]. 内燃机与配件, 2022(10): 17-19. Cao Zhigang, Liu Shijun, Li Yufeng, et al. Finite element simulation research on internal residual stress state of carburizing and quenching gear[J]. Internal Combustion Engine and Parts, 2022(10): 17-19. [7] 尚可超, 杨 帅, 廖云鑫. 渗碳淬火工艺对齿轨轮残余应力和变形影响的仿真研究[J]. 煤矿机械, 2020, 41(1): 85-87. Shang Kechao, Yang Shuai, Liao Yunxin. Simulation study on effect of carburizing and quenching on residual stress and deformation of coal-cutter gear[J]. Coal Mine Machinery, 2020, 41(1): 85-87. [8] 康贺铭, 邓海龙, 李明凯, 等. 渗碳齿轮接触疲劳特性及寿命预测模型构建[J]. 制造技术与机床, 2022(8): 137-141. Kang Heming, Deng Hailong, Li Mingkai, et al. Contact fatigue characteristics and life prediction model of carburized gear[J]. Manufacturing Technology and Machine Tool, 2022(8): 137-141. [9] 吴吉展, 朱才朝, 魏沛堂, 等. 航空齿轮钢强化工艺与表面完整性关联规律研究[J]. 表面技术, 2024, 53(1): 153-168. Wu Jizhan, Zhu Caizhao, Wei Peitang, et al. Correlation between strengthening process and surface integrity of aviation gear steel[J]. Surface Technology, 2024, 53(1): 153-168. [10] 赵 鑫. 齿轮钢18Cr2Ni4WA表面复合强化工艺设计及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. Zhao Xin. Research on surface compound reinforcement technology design and performance of gear steel 18Cr2Ni4WA[D]. Harbin: Harbin Engineering University, 2019. [11] 刘华松, 董延楠, 郑宏光, 等. Nb微合金化对齿轮钢高温渗碳奥氏体晶粒度的影响[J]. 钢铁研究学报, 2021, 33(8): 828-838. Liu Huasong, Dong Yannan, Zheng Hongguang, et al. Influence of Nb microalloying on grain size of austenite in high-temperature carburized gear steel[J]. Journal of Iron and Steel Research, 2021, 33(8): 828-838. [12] 谭克诚, 高祯云. 渗碳温度对齿轮钢组织及磨损性能的影响[J]. 铸造技术, 2015, 36(3): 641-643. Tan Kecheng, Gao Zhenyun. Effects of carburizing temperature on performance of automobile gears[J]. Foundry Technology, 2015, 36(3): 641-643. [13] 朱百智, 李小末, 张 伟. 不同渗碳淬火模式下的18CrNiMo7-6钢晶粒度研究[J]. 金属加工(热加工), 2020(5): 24-27. Zhu Baizhi, Li Xiaomo, Zhang Wei. Study on grain size of 18CrNiMo7-6 steel under different carburizing and quenching modes[J]. MW Metal Forming, 2020(5): 24-27. [14] 秦盛伟, 邸黎寅, 王连翔, 等. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 204-210. Qin Shengwei, Di Liyin, Wang Lianxiang, et al. Effect of carburizing on fatigue properties of notched 18CrNiMo7-6 alloy steel[J]. Materials Reports, 2024, 38(2): 204-210. [15] 孙振淋, 张 茜, 辛玉武, 等. 渗碳方式对18CrNi4A钢齿轮渗层的影响[J]. 金属热处理, 2015, 40(12): 128-131. Sun Zhenlin, Zhang Qian, Xin Yuwu, et al. Effect of carburizing method on carburized layer of 18CrNi4A steel gear[J]. Heat Treatment of Metals, 2015, 40(12): 128-131. |