[1] Zhang M, Sun H, Zhang X, et al. A cotton-derived carbon coating by thermolysis method for enhanced mechanical and bio-compatibility of NiTi alloy[J]. Diamond and Related Materials, 2025, 151: 111744. [2] Yuca H, Enocak T A, Yiit O, et al. Semi-quantitative analysis on sea buckthorn phenolic-rich extract coating bone-like open porous NiTi-based alloy[J]. Heliyon, 2024, 10(14): e34594. [3] Soltanalipour M, Khalil-Allafi J. Preparation of tantalum-containing coatings on NiTi shape memory alloys with enhanced in vitro cytocompatibility and antibacterial effectiveness[J]. Journal of Materials Research and Technology, 2024, 30: 8419-8432. [4] Zhao T, Li Y, Gao Y, et al. Hemocompatibility investigation of the NiTi alloy implanted with tantalum[J]. Journal of Materials Science: Materials in Medicine, 2011, 22(10): 2311-2318. [5] Bansiddhi A, Sargeant T D, Stupp S I, et al. Porous NiTi for bone implants: A review[J]. Acta Biomaterialia, 2008, 4(4): 773-782. [6] Zhao Y, Bai L, Sun Y, et al. Low-temperature alkali corrosion induced growth of nanosheet layers on NiTi alloy and their corrosion behavior and biological responses[J]. Corrosion Science, 2021(9): 109654. [7] 孙永花. NiTi合金表面有序纳米孔涂层的制备及其腐蚀行为与生物学性能[D]. 太原: 太原理工大学, 2021. [8] Liu Y, Hang R, Bai L, et al. Relationship between Ni release and cytocompatibility of Ni-Ti-O nanotubes prepared on biomedical NiTi alloy[J]. Corrosion Science, 2017(8): 123-134. [9] 崔振铎. 生物医学用镍钛形状记忆合金激光表面改性的研究[D]. 天津: 天津大学, 2002. [10] 仇 安. 镍钛合金激光重熔处理及其生物腐蚀性能研究[D]. 淮安: 淮阴工学院, 2022. [11] 任虔弘, 陈超越, 卢战军, 等. 激光选区熔化制备镍钛合金的研究进展[J]. 材料研究与应用, 2021, 15(3): 276-286. Ren Qianhong, Chen Chaoyue, Lu Zhanjun, et al. Progress in the preparation of NiTi alloy by selective laser melting[J]. Materials Research and Application, 2021, 15(3): 276-286. [12] 武子钰, 陈慈航, 黎白钰. 构造具有超疏水/超亲水性材料的研究进展[J]. 化工管理, 2024, 31(11): 133-135. Wu Ziyu, Chen Cihang, Li Baiyu. Advances in the construction of superhydrophobic/superhydrophilic materials[J]. Chemical Engineering Management, 2024, 31(11): 133-135. [13] 颜孟奇, 吴泽浩, 黄利军, 等. TC18钛合金大尺寸β晶粒制备及典型织构对性能的影响[J/OL]. 金属学报, 2024. https://link.cnki.net/urlid/21.1139.TG.20240523.1117.002. Yan Mengqi, Wu Zehao, Huang Lijun, et al. Preparation of large-sized β grains and effect of typical textures on properties of TC18 titanium alloy[J/OL]. Acta Metallurgica Sinica, 2024. https://link.cnki.net/urlid/21.1139.TG.20240523.1117.002. [14] 王 松. 激光选区熔化NiTi合金的微观组织与马氏体相变行为[D]. 哈尔滨: 哈尔滨工程大学, 2021. [15] 周 健, 骈利平, 方 峰, 等. Mo含量对9Cr18Mo钢组织及耐蚀性的影响[J]. 金属热处理, 2023, 48(12): 244-249. Zhou Jian, Pian Liping, Fang Feng, et al. Effect of Mo content on microstructure and corrosion resistance of 9Cr18Mo steel[J]. Heat Treatment of Metals, 2023, 48(12): 244-249. [16] Zhao Y, Sun Y, Lan W, et al. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response[J]. Journal of Materials Science and Technology, 2021, 78: 110-120. [17] 罗 检, 张 勇, 钟庆东, 等. 晶粒度对一些常用金属耐腐蚀性能的影响[J]. 腐蚀与防护, 2012, 33(4): 5-9. Luo Jian, Zhang Yong, Zhong Qingdong, et al. Influence of grain size on corrosion resistant of commonly used metals[J]. Corrosion and Protection, 2012, 33(4): 5-9. [18] Fu Tao, Sun Jianmin. Sol-gel preparation, corrosion resistance and hydrophilicity of Ta-containing TiO2 films on Ti6Al4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 471-476. [19] Wu J, Deng Y, Guo X, et al. Effect of heat treatment on the microstructure and in-situ corrosion behavior of SLM-NiTi alloys[J]. Materials Today Communications, 2024, 39: 108636. [20] Li J, Wang G, Geng H, et al. CVD growth of graphene on NiTi alloy for enhanced biological activity[J]. ACS Applied Materials and Interfaces, 2015, 7(36): 19876-19881. [21] Jamesh M I, Li P, Bilek M, et al. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition[J]. Corrosion Science, 2015, 97: 126-138. |