[1] Morcillo M, Diaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review[J]. Corrosion Science, 2014, 83: 6-31. [2] 周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展[J]. 中国冶金, 2022, 32(8): 7-24. Zhou Lujun, Yang Shanwu. Atmospheric corrosion of marine engineering steels and the development of weathering steels[J]. China Metallurgy, 2022, 32(8): 7-24. [3] Larrabee C P. Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment[J]. Corrosion Engineering, 2014, 3(8): 259-271. [4] Wu W, Dai Z, Liu Z, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion[J]. Corrosion Science, 2021, 183(9): 109353. [5] Hao L, Zhang S, Dong J, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion[J]. Corrosion Science, 2012, 54(1): 244-250. [6] Zhang T, Liu W, Yin Z, et al. Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments[J]. Journal of Materials Engineering and Performance, 2020, 29: 2531-2541. [7] Cheng X, Zhu Jin, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres[J]. Corrosion Science, 2017, 115: 135-142. [8] 田 杨, 黄 晶, 孙洁晖. 含P耐候钢冲击性能不合格原因探讨[J]. 热处理技术与装备, 2023, 44(3): 38-41. Tian Yang, Huang Jing, Sun Jiehui. Discussion on the causes of unqualified impact performance of P-containing weathering steel[J]. Heat Treatment Technology and Equipment, 2023, 44(3): 38-41. [9] 封 辉, 刘 峰, 王本贤, 等. Cu和Cr对耐候钢的力学性能及耐蚀性能的影响[J]. 材料热处理学报, 2012, 33(1): 110-116. Feng Hui, Liu Feng, Wang Benxian, et al. Effects of Cu and Cr on the mechanical and corrosion properties of weathering steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(1): 110-116. [10] 刘庆春, 吴 林, 郑之旺, 等. 高强度热轧耐候钢的钒析出行为与时效性能研究[J]. 钢铁钒钛, 2019, 40(2): 144-148, 155. Liu Qingchun, Wu Lin, Zheng Zhiwang, et al. Study on vanadium precipitation and aging properties of high-strength hot-rolled weathering steel[J]. Iron and Steel Vanadium and Titanium, 2019, 40(2): 144-148, 155. [11] 王 军, 王振尧, 柯 伟. 耐候钢在青海盐湖大气环境下的腐蚀行为及力学性能研究[J]. 中国建材科技, 2010(S1): 90-94. Wang Jun, Wang Zhenyao, Ke Wei. Corrosion behavior and mechanical properties of weathering steel in the atmospheric environment of Qinghai Salt Lake[J]. China Building Materials Science and Technology, 2010(S1): 90-94. [12] Zhang Z, Xu S, Li R. Comparative investigation of the effect of corrosion on the mechanical properties of different parts of thin-walled steel[J]. Thin-Walled Structures, 2020, 146: 26-40. [13] Isavand S, Assempour A. Strain localization and deformation behavior in ferrite-pearlite steel unraveled by high-resolution in-situ testing integrated with crystal plasticity simulations[J]. International Journal of Mechanical Sciences, 2021, 200: 106441. [14] 谷海容, 张 建, 杨兴亮, 等. 铁素体/贝氏体双相钢的延伸凸缘性能研究[J]. 上海金属, 2011, 33(6): 32-35. Gu Hairong, Zhang Jian, Yang Xingliang, et al. Study on the flanging properties of ferrite/bainite dual-phase steel[J]. Shanghai Metals, 2011, 33(6): 32-35. [15] Abbaszadeh K, Saghafian H, Kheirandish S. Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel[J]. Journal of Materials Science and Technology, 2012, 28(4): 336-342. [16] Zhang Y, Huang F, Hu Q, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel[J]. Materials Chemistry and Physics, 2020, 241: 122045. [17] Wang Z, Zhang X, Cheng L, et al. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment[J]. Journal of Materials Research and Technology, 2021, 10: 306-321. |