[1] 陈小伟, 张对红, 王 旭. 油气管道环焊缝面临的主要问题及应对措施[J]. 油气储运, 2021, 40(9): 1072-1080. Chen Xiaowei, Zhang Duihong, Wang Xu. Main problems and countermeasures of girth welds of oil and gas pipelines[J]. Oil and Gas Storage and Transportation, 2021, 40(9): 1072-1080. [2] 左鹏亮, 赵红岩, 吕 源, 等. 油气输送管道环焊缝失效原因分析及预防[J]. 焊管, 2022, 45(5): 58-64. Zuo Pengliang, Zhao Hongyan, Lü Yuan, et al. Failure analysis and prevention of girth weld failure on oil and gas pipeline[J]. Welded Pipe and Tube, 2022, 45(5): 58-64. [3] 罗金恒, 杨锋平, 王 珂, 等. 油气管道失效频率及失效案例分析[J]. 金属热处理, 2015, 40(S1): 470-474. Luo Jinheng, Yang Fengping, Wang Ke, et al. Study of failure frequency and failure cases in oil & gas pipeline[J]. Heat Treatment of Metals, 2015, 40(S1): 470-474. [4] 张 良, 张广利, 杨锋平, 等. 环焊缝开裂原因分析[J]. 金属热处理, 2014, 39(12): 151-156. Zhang Liang, Zhang Guangli, Yang Fengping, et al. Cracking analysis of girth weld[J]. Heat Treatment of Metals, 2014, 39(12): 151-156. [5] 牛 辉, 张 君, 王 磊, 等. 碳当量对油气输送管道环焊缝热影响区韧性的影响规律[J]. 焊管, 2023, 46(12): 14-19. Niu Hui, Zhang Jun, Wang Lei, et al. Effect of carbon equivalent on toughness of girth weld HAZ in oil and gas transportation pipelines[J]. Welded Pipe and Tube, 2023, 46(12): 14-19. [6] 毕宗岳. 低碳微合金钢管焊接接头软化研究[J]. 焊管, 2022, 45(7): 1-6. Bi Zongyue. Research on softening of welded joint in low carbon microalloyed steel pipe[J]. Welded Pipe and Tube, 2022, 45(7): 1-6. [7] 贾 璐, 刘意春, 贾书君, 等. 抗大变形管线钢热影响区软化问题的研究[J]. 材料科学与工艺, 2018, 26(3): 37-44. Jia Lu, Liu Yichun, Jia Shujun, et al. Softening of heat affected zone of high-strain pipeline steel[J]. Materials Science and Technology, 2018, 26(3): 37-44. [8] 陈玉凤, 张俊粉, 薛启河, 等. 氮含量与终轧温度对钛微合金化高强钢 CGLC700低温冲击韧性的影响[J]. 特殊钢, 2024, 45(3): 40-48. Chen Yufeng, Zhang Junfen, Xue Qihe, et al. Effect of nitrogen content and final rolling temperature on low-temperature impact toughness of titanium microalloyed high- strength steel CGLC700[J]. Special Steel, 2024, 45(3): 40-48. [9] 阿 荣, 潘 川, 赵 琳, 等. Ti对大线能量焊接焊缝组织和性能的影响[J]. 钢铁研究学报, 2014, 26(6): 47-53. A Rong, Pan Chuan, Zhao Lin, et al. Effect of titanium on microstructure and mechanical properties in high heat input welds[J]. Journal of Iron and Steel Research, 2014, 26(6): 47-53. [10] 牛延龙, 刘清友, 贾书君, 等. 控冷工艺下组织及M/A岛对管线钢韧性的影响[J]. 钢铁, 2020, 55(6): 91-100. Niu Yanlong, Liu Qingyou, Jia Shujun, et al. Influence of microstructure and M/A island evolution on toughness of pipeline steel under controlled cooling process[J]. Iron and Steel, 2020, 55(6): 91-100. [11] 阮红志, 赵爱民, 赵征志, 等. 高钢级X100管线钢中的M-A岛[J]. 工程科学学报, 2013, 35(4): 474-480. Ruan Hongzhi, Zhao Aimin, Zhao Zhengzhi, et al. M-A islands in high grade X100 pipeline steel[J]. Chinese Journal of Engineering, 2013, 35(4): 474-480. [12] 贾书君, 段琳娜, 刘清友. 高钢级管线钢中M/A组元的控制工艺[J]. 材料热处理学报, 2016, 37(3): 82-88. Jia Shujun, Duan Linna, Liu Qingyou. Controlling process of M/A constituents in high grade pipeline steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(3): 82-88. [13] 史显波, 严 伟, 章传国, 等. 扩径率对X70级大变形管线钢管变形能力的影响[J]. 金属热处理, 2023, 48(3): 71-76. Shi Xianbo, Yan Wei, Zhang Chuanguo, et al. Effect of expanding ratio on strain capacity of X70 grade high deformability pipeline steel pipe[J]. Heat Treatment of Metals, 2023, 48(3): 71-76. [14] Zeng Tianyi, Zhang Shuzhan, Shi Xianbo, et al. Effect of NbC and VC carbides on microstructure and strength of high-strength low-alloyed steels for oil country tubular goods[J]. Materials Science and Engineering A, 2021, 824: 141845. [15] 高惠临. 管线钢与管线钢管[M]. 北京: 中国石化出版社, 2012. [16] 丁 奕, 王力伟, 刘德运, 等. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300. Ding Yi, Wang Liwei, Liu Deyun, et al. Microstructure and properties of dissimilar metal welded joints of low alloy steel and duplex stainless steel[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(2): 295-300. [17] 张 帅, 任 毅, 王 爽, 等. 控轧控冷工艺对海洋高应变管线钢性能和组织的影响[J]. 钢铁研究学报, 2023, 35(11): 1384-1393. Zhang Shuai, Ren Yi, Wang Shuang, et al. Effect of thermos-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393. [18] 万响亮, 李光强, 吴开明. 低合金高强钢针状铁素体组织特征和形成机理[J]. 钢铁研究学报, 2016, 28(6): 1-12. Wan Xiangliang, Li Guangqiang, Wu Kaiming. Microstructure characteristics and formation mechanism of acicular ferrite in high- strength low-alloy steels[J]. Journal of Iron and Steel Research, 2016, 28(6): 1-12. [19] 荀 雨, 严 伟, 史显波, 等. 多边形铁素体/针状铁素体双相管线钢的应变硬化行为[J]. 材料研究学报, 2022, 36(8): 561-570. Xun Yu, Yan Wei, Shi Xianbo, et al. Strain hardening behavior of polygonal ferrite and acicular ferrite dual-phase pipeline steel[J]. Chinese Journal of Materials Research, 2022, 36(8): 561-570. [20] Duan He, Shan Yiyin, Yang Ke, et al. Effect of microstructure and crystallographic orientation characteristics on low temperature toughness and fracture behavior of pipeline steels[J]. Journal of Materials Research and Technology, 2022, 17: 3172-3185. [21] 涂兴洋, 杨昌贵, 史显波, 等. 正火终冷温度对U26Mn2Si2CrNiMo贝氏体奥氏体钢力学性能的影响[J]. 钢铁研究学报, 2023, 35(9): 1161-1173. Tu Xingyang, Yang Changgui, Shi Xianbo, et al. Effect of normalized final cooling temperature on mechanical properties of U26Mn2Si2CrNiMo bainitic austenitic steel[J]. Journal of Iron and Steel Research, 2023, 35(9): 1161-1173. [22] 乔桂英, 韩 杨, 韩秀林, 等. 高铌高强管线钢焊接热影响区的组织与性能[J]. 钢铁研究学报, 2014, 26(10): 40-45. Qiao Guiying, Han Yang, Han Xiulin, et al. Microstructure and mechanical properties of welding heat affected zone of a high-Nb high strength pipeline steel[J]. Journal of Iron and Steel Research, 2014, 26(10): 40-45. [23] 史显波, 王 威, 严 伟, 等. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136. Shi Xianbo, Wang Wei, Yan Wei, et al. Effect of martensite/austenite (M/A) constituent on H2S resistance of high strength pipeline steels[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(2): 129-136. [24] 肖 娜, 徐晓宁, 王益民, 等. 回火温度对EH460级船用中厚钢板组织与强韧性的影响[J]. 金属热处理, 2021, 46(5): 81-86. Xiao Na, Xu Xiaoning, Wang Yimin, et al. Effect of tempering temperature on microstructure, strength and toughness of EH460 grade medium and heavy ship plate steel[J]. Heat Treatment of Metals, 2021, 46(5): 81-86. |