[1] 李春胜, 黄德彬. 金属材料手册[M]. 北京: 化学工业出版社, 2005: 110-112. [2] 黄春峰. 1Cr11Ni2W2MoV钢叶片的热加工工艺与力学性能[J]. 锻压技术, 1999, 24(1): 13-15. Huang Chunfeng. Heat working technology and mechanical properties of 1Cr11Ni2W2MoV steel for blade[J]. Forging and Stamping Technology, 1999, 24(1): 13-15. [3] 刘 松. 1Cr11Ni2W2MoV钢渗碳层中孪晶组织形成原因及对性能的影响[J]. 金属热处理, 2011, 36(2): 33-37. Liu Song. Twin forming reason in carburized layer and its effect on mechanical properties of 1Cr11Ni2W2MoV steel[J]. Heat Treatment of Metals, 2011, 36 (2): 33-37. [4] 孙 奇, 张立新, 韦廷立, 等. 回火温度对1Cr11Ni2W2MoV钢冲击性能的影响[J]. 理化检验(物理分册), 2017, 53(3): 165-168. Sun Qi, Zhang Lixin, Wei Tingli, et al. Effect of tempering temperature on impact toughness of 1Cr11Ni2W2MoV steel[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2017, 53(3): 165-168. [5] Gao G D, Zhang W X, Chen D. A study of low cycle fatigue life prediction method for 1Cr11Ni2W2MoV at 360 ℃[J]. IOP Conference Series: Materials Science and Engineering, 2017, 292(1): 012068. [6] 中国航空材料手册编辑委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2001: 256-259. [7] 王 琳, 孙 枫, 佟小军. 1Cr11Ni2W2MoV钢的离子渗氮[J]. 金属热处理, 2015, 40(6): 128-131. Wang Lin, Sun Feng, Tong Xiaojun. Plasma nitriding of 1Cr11Ni2W2Mo steel[J]. Heat Treatment of Metals, 2015, 40(6): 128-131. [8] 孙小岚, 杨 堃. 1Cr11Ni2W2MoV模锻件耐蚀性改进工艺[J]. 电镀与涂饰, 2021, 40(6): 405-409. Sun Xiaolan, Yang Kun. Process for improving corrosion resistance of 1Cr11Ni2W2MoV die forging[J]. Electroplating and Finishing, 2021, 40(6): 405-409. [9] 汪 诚, 赖志林, 何卫锋. 激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J]. 中国激光, 2014, 41(1): 46-51. Wang Cheng, Lai Zhilin, He Weifeng. Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shocking processing[J]. Chinese Journal of Lasers, 2014, 41(1): 46-51. [10] 谢林均, 朱栓平. 挤压速度对TA16钛合金管坯热挤压成型的影响[J]. 世界有色金属, 2021(19): 132-133. Xie Linjun, Zhu Shuanping. Effect of extrusion speed on hot extrusion forming of TA16 titanium alloy tube blank[J]. World Nonferrous Metals, 2021(19): 132-133. [11] 黄 珂, 郭 磊, 杨伏良, 等. 挤压比对热挤压成型铝铁铜合金组织与拉伸性能的影响[J]. 机械工程材料, 2015, 39(4): 53-58. Huang Ke, Guo Lei, Yang Fuliang, et al. Effects of extrusion ratio on microstructure and tensile properties of an extruded Al-Fe-Cu alloy[J]. Materials and Mechanical Engineering, 2015, 39(4): 53-58. [12] 华 林, 钱东升. 轴承环轧制成形理论和技术[J]. 机械工程学报, 2014, 50(16): 70-76. Hua Lin, Qian Dongsheng. Ring rolling forming theory and technology for bearing[J]. Journal of Mechanical Engineering, 2014, 50(16): 70-76. [13] 陈宗霖, 姜照群, 王少刚. 晶界富集元素和沉淀相对1Cr11Ni2W2MoV钢性能的影响[J]. 材料工程, 1994, 22(S1): 1-3, 23. Chen Zonglin, Jiang Zhaoqun, Wang Shaogang. The influence of enrichment elements on grain boundary and precipitation[J]. Journal of Materials Engineering, 1994, 22(S1): 1-3, 23. [14] Laha K, Saroja S, Moitra A, et al. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties[J]. Journal of Nuclear Materials, 2013, 439(1/3): 41-50. [15] 孙 霞, 刘春明. 铸造低碳马氏体不锈钢的现状与发展趋势[J]. 铸造, 2007, 56(1): 1-5. Sun Xia, Liu Chunming. Status and tendency of development for cast low carbon martensitic stainless steel[J]. Foundry, 2007, 56(1): 1-5. [16] 陆世英. 在腐蚀环境中, 不锈钢的合理选择[J]. 钢铁, 1985, 20(12): 3-16. Lu Shiying. Selection of stainless steels for corrosive environments[J]. Iron and Steel, 1985, 20(12): 3-16. [17] 陈宇翔. 630 ℃超超临界火电汽轮机转子用耐热钢成分体系筛选[D]. 包头: 内蒙古科技大学, 2020. Chen Yuxiang. Selection of heat-resistant steel composition system for 630 ℃ ultra-supercritical thermal power steam turbine rotor[D]. Baotou: Inner Mongolia University of Science and Technology, 2020. [18] 白 鹤, 王伯健. 马氏体不锈钢成分、工艺和耐蚀性的进展[J]. 特殊钢, 2009, 30(2): 30-33. Bai He, Wang Bojian. Progress in chemical composition, process and corrosion resistance of martensite stainless steel[J]. Special Steel, 2009, 30(2): 30-33. |