[1] Bai S B, Chen Y A, Liu X, et al. Research status and development prospect of Fe-Mn-C-Al system low-density steels[J]. Journal of Materials Research and Technology, 2023, 25: 1537-1559. [2] 孔 玲, 王玉辉, 杨浩坤, 等. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47. Kong Ling, Wang Yuhui, Yang Haokun, et al. Research situation of service performance of Fe-Mn-Al-C austenitic low density steel[J]. Journal of Mechanical Engineering, 2024, 60(8): 34-47. [3] Liu Z Q, Gao X H, Xiong S J, et al. Role of hot rolling procedure and solution treatment process on microstructure, strength and cryogenic toughness of high manganese austenitic steel[J]. Materials Science and Engineering A, 2021, 807: 140881. [4] Kim H, Suh D, Kim N. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014205. [5] 王英虎. 汽车用高强韧Fe-Mn-Al-C系低密度钢研究进展[J]. 铸造技术, 2019, 40(8): 868-873. Wang Yinghu. Research progress of Fe-Mn-Al-C low density steel with high strength and toughness for automobile[J]. Foundry Technology, 2019, 40(8): 868-873. [6] Wang H, Wang C Y, Liang J X, et al. Effect of alloying content on microstructure and mechanical properties of Fe-Mn-Al-C low density steels[J]. Materials Science and Engineering A, 2023, 886: 145675. [7] 林方敏, 邢 梅, 唐立志, 等. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 158-165. Lin Fangmin, Xing Mei, Tang Lizhi, et al. Research progress of Fe-Mn-Al-C low-density steels and their strengthening mechanisms[J]. Materials Review, 2023, 37(5): 158-165. [8] Freitas V, Lins C, Freitas M. Oxidation kinetics of an Fe-31.8Mn-6.09Al-1.60Si-0.40C alloy at temperatures from 600 ℃ to 900 ℃[J]. Corrosion Science, 2004, 46(8): 1895-1907. [9] Chen P, Li X W, Yi H L. The κ-carbides in low-density Fe-Mn-Al-C steels: A review on their structure, precipitation and deformation mechanism[J]. Metals, 2020, 10(8): 1021. [10] 丁 桦, 张 宇, 蔡明晖, 等. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041. Ding Hua, Zhang Yu, Cai Minghui, et al. Research progress and prospects of austenite-based Fe-Mn-Al-C lightweight steels[J]. Acta Metallurgica Sinica, 2023, 59(8): 1027-1041. [11] Moshiri A, Zarei A, Charkhchian J, et al. Room temperature deformation mechanisms of a Fe-Mn-Al-C steel[J]. Journal of Materials Research and Technology, 2023, 26: 4696-4705. [12] 章小峰, 杨 浩, 李家星, 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型[J]. 材料导报, 2018, 32(16): 2859-2864. Zhang Xiaofeng, Yang Hao, Li Jiaxing, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steelsbased on thermodynamics theory[J]. Materials Review, 2018, 32(16): 2859-2864. [13] 王凤权, 孙 挺, 王毛球, 等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展[J]. 钢铁, 2021, 56(6): 89-102. Wang Fengquan, Sun Ting, Wang Maoqiu, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel[J]. Iron and Steel, 2021, 56(6): 89-102. [14] Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering A, 2008, 496(1/2): 417-424. [15] 陈 欢, 孙新军, 王小江, 等. 高锰奥氏体低温钢力学性能及Hall-Petch关系的研究[J]. 材料科学与工艺, 2018, 26(5): 11-18. Chen Huan, Sun Xinjun, Wang Xiaojiang, et al. Mechanical properties and Hall-Petch relationship of high manganese austenitic cryogenic steel[J]. Materials Science and Technology, 2018, 26(5): 11-18. [16] Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature[J]. Scripta Materialia, 2013, 68(6): 375-379. |