[1] Pollock T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15: 809-815. [2] Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19): 5775-5799. [3] Park S Y, Kim W J. Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al-Zn-Mg-Cu (7075) alloys[J]. Journal of Materials Science and Technology, 2016, 32(7): 660-670. [4] Juan Y F, Niu G S, Yang Y, et al. Accelerated design of Al-Zn-Mg-Cu alloys via machine learning[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(3): 709-723. [5] 陈 轩, 李萌蘖, 卜恒勇, 等. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 1-16. Chen Xuan, Li Mengnie, Bu Hengyong, et al. Research status and progress on the welding technologies of 7××× series aluminum alloy[J]. Material Reports, 2023, 37(13): 1-16. [6] 郭富强. 时效强化Al-Zn-Mg-Cu合金及搅拌摩擦焊接头表面超疏水耐蚀改性研究[D]. 济南: 山东大学, 2024. Guo Fuqiang. Study of superhydrophobie corrosion resistance modification on aging precipitation strengthened Al-Zn-Mg-Cu alloy and friction stir welded joints[D]. Jinan: Shandong University, 2024. [7] 赵永兴. 飞行器尾翼用800 MPa级Al-Zn-Mg-Cu合金组织性能调控与机理研究[D]. 长沙: 中南大学, 2023. Zhao Yongxing. Research on regulation of the microstructure and properties of 800 MPa Al-Zn-Mg-Cu alloy for air vehicle tail wing and related mechanism[D]. Changsha: Central South University, 2023. [8] 从福官, 赵 刚, 田 妮, 等. 7×××系超高强铝合金的强韧化研究进展及发展趋势[J]. 轻合金加工技术, 2012, 40(10): 23-33. Cong Fuguan, Zhao Gang, Tian Ni, et al. Research progress and development trend of strengthening-toughening of ultra-high strength 7××× aluminum alloy[J]. Light Alloy Fabrication Technology, 2012, 40(10): 23-33. [9] 张王军, 李 云, 吴玉娜, 等. 超高强7×××系铝合金的研究现状及发展趋势[J]. 现代交通与冶金材料, 2023, 3(3): 52-60, 84. Zhang Wangjun, Li Yun, Wu Yuna, et al. A critical review of the state-of-the-art of ultra-high strength 7××× aluminum alloys[J]. Modern Transportation and Metallurgical Materials, 2023, 3(3): 52-60, 84. [10] 熊柏青, 李锡武, 张永安, 等. 高强韧低淬火敏感性7×××系铝合金的发展[J]. 中国材料进展, 2014, 33(2): 114-119. Xiong Baiqing, Li Xiwu, Zhang Yongan, et al. Development of 7××× series aluminum alloy with high strength high toughness and low quench sensitivity[J]. Materials China, 2014, 33(2): 114-119. [11] Shu W, Hou L, Zhang C, et al. Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A, 2016, 657: 269-283. [12] 钟 皓, 韩 逸, 陈 琦, 等. 7150铝合金铸态组织中第二相的形貌及相组成[J]. 特种铸造及有色合金, 2008, 28(2): 106-108. Zhong Hao, Han Yi, Chen Qi, et al. Morphology and phase constituent of secondary phase in as-cast microstructure of 7150 aluminum alloy[J]. Special Casting and Nonferrous Alloys, 2008, 28(2): 106-108. [13] 刘 萍, 陈江华, 刘吉梓, 等. 主要合金元素对7000系铝合金铸态和均匀化状态的组织影响[J]. 电子显微学报, 2013, 32(1): 6-13. Liu Ping, Chen Jianghua, Liu Jizi, et al. Influence of the main alloy elements on the microstructures of as-cast and homogenization treated state of 7000 series aluminum alloys[J]. Journal of Chinese Electron Microscopy Society, 2013, 32(1): 6-13. [14] 彭国胜. 变形和热处理对Al-Zn-Mg-Cu系超强铝合金组织和性能的影响[D]. 长沙: 中南大学, 2013. |