[1] Li Z, Chang B, Zhang D, et al. Effect of post-heat treatment on Ti2AlNb-based alloy fabricated by twin-wire alternating dual-electron beam additive manufacturing technology[J]. Journal of Materials Science and Technology, 2023, 157: 130-143. [2] Wei H L, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science, 2021, 116: 100703. [3] 王 雷, 伽亮亮. 热处理对体育器械用SLM制备7175铝合金组织性能的影响[J]. 金属热处理, 2024, 49(6): 115-119. Wang Lei, Jia Liangliang. Effect of heat treatment on microstructure and properties of 7175 aluminum alloy prepared by SLM for sports equipment[J]. Heat Treatment of Metals, 2024, 49(6): 115-119. [4] Sokoluk M, Cao C, Pan S, et al. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075[J]. Nature Communications, 2019, 10(1): 98. [5] Qi T, Zhu H, Zhang H, et al. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials and Design, 2017, 135: 257-266. [6] 陈文涛, 尹 靖, 王春艳, 等. 激光增材制造6061铝合金热处理及强韧机理[J]. 金属热处理, 2023, 48(8): 172-179. Chen Wentao, Yin Jing, Wang Chunyan, et al. Heat treatment and strengthening mechanisms of laser additive manufactured 6061 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(8): 172-179. [7] 蔡小叶, 程宗辉, 董定平, 等. 热处理对L-PBF成形Ti-6Al-4V钛合金显微组织和力学性能的影响[J]. 金属热处理, 2024, 49(2): 183-189. Cai Xiaoye, Cheng Zonghui, Dong Dingping, et al. Effect of heat treatment on microstructure and mechanical properties of Ti-6Al-4V titanium alloy formed by laser powder bed fusion[J]. Heat Treatment of Metals, 2024, 49(2): 183-189. [8] Tan Q, Liu Y, Fan Z, et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science and Technology, 2020, 58: 34-45. [9] Feng Z, Tan H, Fang Y, et al. Selective laser melting of TiB2/AlSi10Mg composite: Processability, microstructure and fracture behavior[J]. Journal of Materials Processing Technology, 2022, 299: 117386. [10] Stopyra W, Gruber K, Smolina I, et al. Laser powder bed fusion of AA7075 alloy: Influence of process parameters on porosity and hot cracking[J]. Additive Manufacturing, 2020, 35: 101270. [11] 何宗政, 吴名冬, 袁 硕, 等. Zn/Mg比对7075铝合金显微组织、力学性能和耐蚀性能的影响[J]. 金属热处理, 2024, 49(5): 1-9. He Zongzheng, Wu Mingdong, Yuan Shuo, et al. Effect of Zn/Mg ratio on microstructure, mechanical properties and corrosion resistance of 7075 aluminum alloy[J]. Heat Treatment of Metals, 2024, 49(5): 1-9. [12] 王永红, 郭丰佳, 黄同瑊, 等. Al-Zn-Mg-Cu合金厚板沿厚度方向的显微组织和硬度[J]. 金属热处理, 2024, 49(10): 148-155. Wang Yonghong, Guo Fengjia, Huang Tongjian, et al. Microstructure and hardness of Al-Zn-Mg-Cu alloy thick plate along thickness direction[J]. Heat Treatment of Metals, 2024, 49(10): 148-155. [13] 胡士齐. 7075铝合金激光增材制造工艺参数智能优化及组织调控[J]. 应用激光, 2024, 44(4): 7-14. Hu Shiqi. The intelligent optimization of laser additive manufacturing parameters and microstructure control of 7075 aluminum alloy[J]. Applied Laser, 2024, 44(4): 7-14. [14] Li G, Li X, Guo C, et al. Investigation into the effect of energy density on densification, surface roughness and loss of alloying elements of 7075 aluminium alloy processed by laser powder bed fusion[J]. Optics and Laser Technology, 2022, 147: 107621. [15] Otani Y, Sasaki S. Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability[J]. Materials Science and Engineering A, 2020, 777: 139079. [16] Xiao F, Wang S, Wang Y, et al. Niobium nanoparticle-enabled grain refinement of a crack-free high strength Al-Zn-Mg-Cu alloy manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 900: 163427. [17] Liu X, Liu Y, Zhou Z, et al. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy[J]. Journal of Materials Science and Technology, 2022, 124: 41-52. [18] Kim Y Y, Euh K, Kim S H, et al. Effects of Ag/Sc microadditions on the precipitation of over-aged Al-Zn-Mg-Cu alloys[J]. Journal of Materials Science and Technology, 2025, 209: 219-229. [19] Scudino S, Unterdörfer C, Prashanth K, et al. Additive manufacturing of Cu-10Sn bronze[J]. Materials Letters, 2015, 156: 202-204. [20] Kazanjian S M, Wang N, Starke E A. Creep behavior and microstructural stability of Al-Cu-Mg-Ag and Al-Cu-Li-Mg-Ag alloys[J]. Materials Science and Engineering A, 1997, 234: 571-574. [21] Zhang J, Gao J, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting[J]. Additive Manufacturing, 2021, 38: 101829. [22] Chen B, Moon S K, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy[J]. Scripta Materialia, 2017, 141: 45-49. [23] Wu S, Lei Z, Li B, et al. Hot cracking evolution and formation mechanism in 2195 Al-Li alloy printed by laser powder bed fusion[J]. Additive Manufacturing, 2022, 54: 102762. |