[1] Cantor B, Chang I T H, Knight P. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375-377: 213-218. [2] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [3] Yang Y F, Hu F, Xia T, et al. High entropy alloys: A review of preparation techniques, properties and industry applications[J]. Journal of Alloys and Compounds, 2025, 1010: 177691. [4] 高 威, 周希晨, 朱前勇, 等. 面向极端载荷环境用高熵合金的研究进展[J]. 航空材料学报, 2024, 44(5): 154-173. Gao Wei, Zhou Xichen, Zhu Qianyong, et al. Research progress on high-entropy alloys for extreme loading environments[J]. Journal of Aeronautical Materials, 2024, 44(5): 154-173. [5] Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4(1): 6200. [6] 李承泽, 尤俊华, 白鹤山, 等. 高熵合金的热处理综述[J]. 材料热处理学报, 2020, 41(5): 1-12. Li Chengze, You Junhua, Bai Heshan, et al. A review of heat treatment of high entropy alloys[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 1-12. [7] Shang Genfeng, Zheng Weisen, Wang Jingjing, et al. Microstructural evolution and local mechanical properties of dendrites in Al0.6CoCrFeNi high entropy alloy[J]. Materials Science and Engineering A, 2022, 846: 143294. [8] 黄延禄, 温宝贤, 黄 铭. 激光熔覆加工温度场特征与凝固组织形成[J]. 应用激光, 2017, 37(5): 629-633. Huang Yanlu, Wen Baoxian, Huang Ming. Characteristics of the temperature field and formation of the microstructure for laser cladding processing[J]. Applied Laser, 2017, 37(5): 629-633. [9] 张天刚, 郑成洲, 肖海强, 等. Y2O3对含Cu钛合金激光熔覆层微观组织与性能的影响[J]. 热加工工艺, 2019, 48(6): 171-174. Zhang Tiangang, Zheng Chengzhou, Xiao Haiqiang, et al. Effects of Y2O3 on microstructure and properties of titanium alloy laser cladding layer containing copper[J]. Hot Working Technology, 2019, 48(6): 171-174. [10] Tuominen J, Kaubisch M, Thieme S, et al. Laser strip cladding for large area metal deposition[J]. Additive Manufacturing, 2019, 27: 208-216. [11] Peng Z, Yu G, Shufeng Y, et al. Study on the molten pool behavior, solidification structure, and inclusion distribution in an industrial vacuum arc remelted nickel-based superalloy[J]. Metallurgical and Materials Transactions, 2023, 54(2): 698-711. [12] Li X, Chu H, Chen Y, et al. Microstructure and properties of the laser cladding ODS layers on CLAM steel[J]. Surface and Coatings Technology, 2018, 357: 172-179. [13] 梅明亮, 黄 旭, 刘 畅. 热处理工艺调控激光熔覆WC@Ni/Ni60涂层组织与性能[J]. 粉末冶金工业, 2023, 33(3): 111-119. Mei Mingliang, Huang Xu, Liu Chang. Heat-treatment process control for microstructure and properties of laser cladding WC@Ni/Ni60 coating[J]. Powder Metallurgy Industry, 2023, 33(3): 111-119. [14] Adrianna L, Reza G, Yubin Z, et al. Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi<sub>2.1 eutectic high-entropy alloy[J]. Materials Science and Engineering A, 2022, 833: 142558. [15] Wani S I, Bhattacharjee T, Sheikh S, et al. Effect of severecold-rolling and annealing on microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. IOP Conference Series: Materials Science and Engineering, 2017, 194(1): 012018. [16] Feng X, Surjadi U, Lu Y. Annealing-induced abnormal hardening in nanocrystalline NbMoTaW high-entropy alloy thin films[J]. Materials Letters, 2020, 275: 128097. [17] Payam E, Abbas M, Mostafa K, et al. Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion[J]. Journal of Alloys and Compounds, 2021, 884: 161101. [18] Jiro K, Kazuhisa H, Yuta K, et al. Superconductivity and hardness of the equiatomic high-entropy alloy HfMoNbTiZr[J]. Journal of Alloys and Compounds, 2022, 924: 166473. [19] 张传伟, 周楷文, 高中堂, 等. 激光熔覆滑靴材料基体熔覆层裂纹的产生机理[J]. 热加工工艺, 2019, 48(10): 148-151, 156. Zhang Chuanwei, Zhou Kaiwen, Gao Zhongtang, et al. Formation mechanism of crack in cladding layer of slipper materials matrix prepared by laser cladding[J]. Hot Working Technology, 2019, 48(10): 148-151, 156. [20] Zeng Y, Guo Y, Yang Q, et al. Effect of Ti, Mn and Mo on the microstructure and properties of CoCrFeNi high entropy alloy coatings prepared by laser cladding[J]. Materials Today Communications, 2024, 41: 110509. [21] Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates[J]. Journal of Materials Science & Technology, 2023, 136: 97-108. [22] 冯道臣, 郑文健, 高国奔, 等. AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性[J]. 焊接学报, 2022, 43(5): 43-48, 116. Feng Daochen, Zheng Wenjian, Gao Guoben, et al. Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding[J]. Transactions of the China Welding Institution, 2022, 43(5): 43-48, 116. [23] Zhang Z C, Lan A D, Zhang M, et al. Effect of Ce on the pitting corrosion resistance of non-equiatomic high-entropy alloy Fe40Mn20Cr20Ni20 in 3.5wt.%NaCl solution[J]. Journal of Alloys and Compounds, 2022, 909: 164641. |