[1] 徐 帅, 吴庆霄. 内燃机气门感应热处理技术与质量控制[J]. 内燃机与配件, 2019(18): 82-83. [2] 孙逸翔, 秦 建, 张 雷, 等. Ni60激光熔覆涂层成形行为与微观组织分析[J]. 电焊机, 2024, 54(11): 44-49. Sun Yixiang, Qin Jian, Zhang Lei, et al. Formation behavior and microstructure analysis of Ni60 laser cladding coating[J]. Electric Welding Machine, 2024, 54(11): 44-49. [3] 谢处方. 电磁场与电磁波[M]. 5版. 北京: 高等教育出版社, 2019. [4] 梁 锋. 从法拉第电磁感应定律到麦克斯韦方程[J]. 电气电子教学学报, 2024, 46(5): 119-124. Liang Feng. From Faraday's law of electromagnetic induction to Maxwell's equations[J]. Journal of Electrical and Electronic Education, 2024, 46(5): 119-124. [5] 刘守河, 易建业, 谢 晖. 基于电磁热耦合的Cr12MoV模具钢感应淬火数值模拟[J]. 金属热处理, 2024, 49(8): 225-231. Liu Shouhe, Yi Jianye, Xie Hui. Numerical simulation on induction hardening of Cr12MoV die steel based on electromagnetic thermal coupling[J]. Heat Treatment of Metals, 2024, 49(8): 225-231. [6] Hildenwall B, Ericsson T. Prediction of residual stresses in case-hardening steels[J]. Hardenability Concepts with Applications to Steel, 1977: 579-606. [7] Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei[J]. The Journal of Chemical Physics, 1940, 8(2): 212-224. [8] Şimşir C, Gür C H. 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution[J]. Journal of Materials Processing Technology, 2008, 207(1-3): 211-221. [9] 隋佳丽. 大型风电主轴淬火过程有限元仿真[D]. 济南: 山东大学, 2019. [10] 徐佐仁. 国外热处理技术的新进展[J]. 国外金属热处理, 1987(4): 61-64. [11] 郑贤淑, 金俊泽, 郭可訒, 等. 大型铸钢轧辊铸造及热处理应力的数值模拟[J]. 钢铁, 1988(10): 35-41. Zheng Xianshu, Jin Junze, Guo Keren, et al. Numerical simulation of stress-field of a cast steel roll in solidification and heat-treatment[J]. Iron and Steel, 1988(10): 35-41. [12] Kotlan V, Hamar R, Smolyanov I A, et al. Induction-assisted laser welding taking into account phase changes[J]. COMPEL, 2019, 38(4): 1357-1371. [13] Kik T, Moravec J, Novakova I. New method of processing heat treatment experiments with numerical simulation support[J]. IOP Conference Series: Materials Science and Engineering, 2017, 227(1): 012069. [14] 余 露. 基于BP神经网络硫化机热板表面温度场研究[D]. 宁波: 宁波大学, 2018. [15] 刘雨芳. GW16A-550型户外高压交流隔离开关三维电场与温度场分析[D]. 长沙: 湖南大学, 2016. [16] Silvester P, Chari M V K. Finite element solution of saturable magnetic field problems[J]. IEEE Transactions on Power Apparatus and Systems, 1970(7): 1642-1651. [17] Marchand C, Foggia A. 2D finite element program for magnetic induction heating[J]. IEEE Transactions on Magnetics, 1983, 19(6): 2647-2649. [18] Sadeghipour K, Dopkin J A, Li K. A computer aided finite element/experimental analysis of induction heating process of steel[J]. Computers in Industry, 1996, 28(3): 195-205. [19] Bay F, Labbé V, Favennec Y, et al. A numerical model for induction heating processes coupling electromagnetism and thermomechanics[J]. International Journal for Numerical Methods in Engineering, 2003, 58(6): 839-867. [20] Magnabosco I, Ferro P, Tiziani A, et al. Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis[J]. Computational Materials Science, 2006, 35(2): 98-106. [21] Bermúdez A, Gómez D, Muiz M C, et al. Numerical simulation of a thermo-electromagneto-hydrodynamic problem in an induction heating furnace[J]. Applied Numerical Mathematics, 2009, 59(9): 2082-2104. [22] Karban P, Donátová M. Continual induction hardening of steel bodies[J]. Mathematics and Computers in Simulation, 2010, 80(8): 1771-1782. [23] Ivanov D, Markegård L, Asperheim J I, et al. Simulation of stress and strain for induction-hardening applications[J]. Journal of Materials Engineering and Performance, 2013, 22: 3258-3268. [24] Pan A, Lan H, Huang Y, et al. Study on the preparation technology of a ceramic panel with a magnetic interlayer for an induction cooker[J]. Applied Sciences, 2019, 9(5): 970. [25] Wen H, Zhang X, Ye H, et al. Research on the mechanism of magnetic flux concentrator in the gap-to-gap induction heating of wind power gear[J]. International Journal of Thermal Sciences, 2021, 168: 107055. [26] Patil M, Choubey R K, Jain P K. Influence of coil shapes on temperature distribution in induction heating process[J]. Materials Today: Proceedings, 2023, 72: 3029-3035. [27] Deshmukh V, Sahay S, Agrawal B, et al. An integrated modeling approach for induction hardening process[R]. SAE Technical Paper, 2011. [28] Janutienė R K, Maeika D. Modelling of induction heating of steel work piece for forging of crankshaft[J]. Materials Science, 2018, 24(3): 345-350. [29] Kattimani M A, Venkatesh P R, Masum H, et al. Design and numerical analysis of tensile deformation and fracture properties of induction hardenedinconel 718 superalloy for gas turbine applications[J]. International Journal on Interactive Design and Manufacturing, 2024, 18(8): 5939-5949. [30] Lepeshkin A R, Kuvaldin A B, Lepeshkin C A, et al. Method for modeling the modes of induction heating of turbine blades[J]. IOP Conference Series: Materials Science and Engineering, 2020, 950(1): 012022. [31] 北京钢铁学院金属学及热处理专业斜轧科研组. 斜轧轧辊热处理工艺的研究[J]. 轴承, 1980(3): 55-60. [32] 吴金富, 许雪峰. 感应加热工件内电磁场计算及其有限元模拟[J]. 浙江工业大学学报, 2004, 34(1): 60-64, 79. Wu Jinfu, Xu Xuefeng. Computation and finite element simulation of electromagnetic field of induction heating workpiece[J]. Journal of Zhejiang University of Technology, 2004, 34(1): 60-64, 79. [33] 王 宏. 曲轴感应加热淬火仿真研究[D]. 长春: 吉林大学, 2005. [34] 杨晨光. 42CrMo钢轴类件变功率感应加热数值模拟研究[D]. 秦皇岛: 燕山大学, 2010. [35] 张云鹭. 感应热处理工艺数值分析与快速奥氏体化动力学研究[D]. 上海: 上海交通大学, 2013. [36] 马再敏, 曹志国, 倪嘉楠. 钢轨中频感应正火三维温度场数值模拟[J]. 金属热处理, 2015, 40(4): 165-168. Ma Zaimin, Cao Zhiguo, Ni Jianan. Numerical simulation of three-dimensional temperature field of medium-frequency induction normalizing for rail[J]. Heat Treatment of Metals, 2015, 40(4): 165-168. [37] 王 奇. 伞齿轮双频感应淬火过程数值分析[D]. 秦皇岛: 燕山大学, 2018. [38] 陈庆安, 王艳辉, 张建宇, 等. 钢板连续移动感应淬火温度场数值模拟及实验研究[J]. 表面技术, 2020, 49(9): 332-338, 377. Chen Qing'an, Wang Yanhui, Zhang Jianyu, et al. Numerical simulation and experiment research on the temperature field of continual induction hardening for a steel plate[J]. Surface Technology, 2020, 49(9): 332-338, 377. [39] 梁建全, 肖 瑶, 魏雨林, 等. 基于异形线圈的齿轮异步双频感应加热[J]. 金属热处理, 2024, 49(12): 274-283. Liang Jianquan, Xiao Yao, Wei Yulin, et al. Asynchronous dual-frequency induction heating of gears based on irregular coil[J]. Heat Treatment of Metals, 2024, 49(12): 274-283. [40] 安伟骋, 王占军, 张文良, 等. 高精度齿条料连续感应炉及感应过程模拟[J]. 金属热处理, 2017, 42(3): 198-201. An Weicheng, Wang Zhanjun, Zhang Wenliang, et al. Continuous induction furnace for high precision rack material and simulation of induction process[J]. Heat Treatment of Metals, 2017, 42(3): 198-201. [41] 孙 颖, 贺连芳, 李志超, 等. 滚珠丝杠仿形感应淬火工艺设计及数值模拟[J]. 材料热处理学报, 2022, 43(2): 161-169. Sun Ying, He Lianfang, Li Zhichao, et al. Process design and numerical simulation of profiling induction hardening of ball screw[J]. Transactions of Materials and Heat Treatment, 2022, 43(2): 161-169. [42] Kranjc M, upanič A, Jarm T, et al. Optimization of induction heating using numerical modeling and genetic algorithm[C]//2009 35th annual conference of IEEE industrial electronics. IEEE, 2009: 2104-2108. [43] Mühlbauer A. History of Induction Heating and Melting[M]. Vulkan-Verlag GmbH, 2008. [44] 陈素明, 杨 平, 任树锋, 等. 30CrMnSiNi2A钢轴类零件感应热处理的数值模拟[J]. 金属热处理, 2023, 48(4): 235-244. Chen Suming, Yang Ping, Ren Shufeng, et al. Numerical simulation of induction heat treatment of 30CrMnSiNi2A steel shaft parts[J]. Heat Treatment of Metals, 2023, 48(4): 235-244. [45] 安伟骋. 高精度齿条棒料连续感应热处理的数值模拟研究[D]. 北京: 机械科学研究总院, 2017. [46] 陈彦孜, 刘馨宇, 苏 航, 等. 基于模拟软件的贝氏体钢轨热处理工艺优化[J]. 金属热处理, 2024, 49(7): 38-42. Chen Yanzi, Liu Xinyu, Su Hang, et al. Optimization of heat treatment process of bainitic rails based on simulation software[J]. Heat Treatment of Metals, 2024, 49(7): 38-42. |