[1] 张晓伟, 刘洪喜, 蒋叶华, 等. Ti6Al4V合金表面激光熔覆功能复合涂层研究进展[J]. 稀有金属材料与工程, 2012, 41(1): 178-183. Zhang Xiaowei, Liu Hongxi, Jiang Yehua, et al. Research progress of functional composite coatings on Ti6Al4V alloy surface prepared by laser cladding technique[J]. Rare Metal Materials and Engineering, 2012, 41(1): 178-183. [2] Li Rongyao, Feng Aixin, Zhao Jian, et al. Study on process optimization of WC-Ni60A cermet composite coating by laser cladding[J]. Materials Today Communications, 2023, 37: 107400. [3] Liu Hao, Wang Ruitong, Gao Qiang, et al. Evolution in microstructure and tribological behavior of laser cladded MoxNbTiZr high-entropy refractory alloy coatings with varying Mo content[J]. Materials Characterization, 2023, 206: 113449. [4] Gao Wei, Wang Shicheng, Hu Kangkai, et al. Effect of laser cladding speed on microstructure and properties of titanium alloy coating on low carbon steel[J]. Surface and Coatings Technology, 2022, 451: 129029. [5] Wang Jianting, Timokhina Ilana, Sharp Khan, et al. Microstructure and precipitation behaviours of laser clad 7075 aluminium alloy[J]. Surface and Coatings Technology, 2022, 445: 128726. [6] 徐 龙, 洪 捐, 汪 炜. 纳秒激光熔覆硅纳米薄膜的仿真分析及实验研究[J]. 中国激光, 2019, 46(4): 90-101. Xu Long, Hong Juan, Wang Wei. Simulation analysis and experimental study on nanosecond laser cladding silicon nano film[J]. Chinese Journal of Lasers, 2019, 46(4): 90-101. [7] 王冰涛, 熊宗慧, 孙耀宁. 不锈钢表面激光熔覆镍基合金涂层的数值模拟与试验[J]. 金属热处理, 2023, 48(1): 232-237. Wang Bingtao, Xiong Zonghui, Sun Yaoning. Numerical simulation and experiments of laser cladding of nickel-based alloy coating on stainless steel surface[J]. Heat Treatment of Metals, 2023, 48(1): 232-237. [8] 姚芳萍, 房立金, 李金华, 等. 激光功率对激光熔覆Ni基涂层温度场和应力场的影响[J]. 塑性工程学报, 2021, 28(11): 87-94. Yao Fangping, Fang Lijin, Li Jinhua, et al. Effect of laser power on temperature field and stress field of laser cladding Ni-based coating[J]. Journal of Plasticity Engineering, 2021, 28(11): 87-94. [9] Guo F L, Yue M T, Man C H. A finite element method approach for thermal analysis of laser cladding of magnesium alloy with preplaced Al-Si powder[J]. Journal of Laser Applications, 2004, 16(4): 229-235. [10] 开佳伟, 尹 莉, 胡肇炜, 等. 激光熔覆Mo2NiB2熔覆层温度场与应力场仿真研究[J]. 陶瓷学报, 2021, 42(6): 1064-1071. Kai Jiawei, Yin Li, Hu Zhaowei, et al. Simulation of temperature field and stress field of Mo2NiB2 coating[J]. Journal of Ceramics, 2021, 42(6): 1064-1071. [11] 刘丽兰, 李思聪, 豆卫涛, 等. 316L 不锈钢表面激光熔覆Ni60合金涂层的工艺优化与性能研究[J]. 中国激光, 2024, 51(16): 110-123. Liu Lilan, Li Sicong, Dou Weitao, et al. Process optimization and performance analysis for laser-cladding Ni60 alloycoating on surface of 316L stainless steel[J]. Chinese Journal of Lasers, 2024, 51(16): 110-123. [12] 李 星, 王亚强, 张金钰, 等. 高熵合金涂层的研究进展[J]. 表面技术, 2023, 52(1): 1-20, 46. Li Xing, Wang Yaqiang, Zhang Jinyu, et al. Research progress of high-entropy alloy coatings[J]. Surface Technology, 2023, 52(1): 1-20, 46. [13] Li Keyao, Liang Jun, Zhou Jiansong. Microstructure and elevated temperature tribological performance of the CoCrFeNiMo high entropy alloy coatings[J]. Surface and Coatings Technology, 2022, 449: 128978. [14] 虞 钢, 何秀丽, 李少霞. 激光先进制造技术及其应用[M]. 北京: 国防工业出版社, 2016. [15] 王丽芳, 孙亚新, 朱刚贤, 等. 激光熔覆316不锈钢残余应力工艺参数的优化模拟[J]. 应用激光, 2019, 39(3): 376-380. Wang Lifang, Sun Yaxin, Zhu Gangxian, et al. Optimization simulation of process parameters on the residual stress in 316L stainless steel by laser cladding[J]. Applied Laser, 2019, 39(3): 376-380. [16] 刘昊程, 吕彦明, 黄 强, 等. 基于Workbench的316L不锈钢增材制造温度场数值模拟研究[J]. 制造技术与机床, 2023(2): 141-146. Liu Haocheng, Lü Yanming, Huang Qiang, et al. Numerical simulation of temperature field of 316L stainless steel in additive manufacturing by Workbench[J]. Manufacturing Technology and Machine Tool, 2023(2): 141-146. |