金属热处理 ›› 2025, Vol. 50 ›› Issue (8): 264-271.DOI: 10.13251/j.issn.0254-6051.2025.08.042

• 数值模拟 • 上一篇    下一篇

6061铝合金气瓶喷淋淬火数值模拟

龙振宇1, 邓小虎1, 陈睿博2, 杜纪柱3, 马永明4, 马元浩1, 修永帅1, 肖枫1   

  1. 1.天津职业技术师范大学 天津市高性能精准成形制造技术与装备重点实验室, 天津 300222;
    2.中国机械总院集团宁波智能机床研究院有限公司, 浙江 宁波 315700;
    3.潍柴动力股份有限公司, 山东 潍坊 261061;
    4.海思特(苏州)材料科技有限公司, 江苏 苏州 430048
  • 收稿日期:2025-03-03 修回日期:2025-05-15 出版日期:2025-08-25 发布日期:2025-09-10
  • 通讯作者: 邓小虎,副教授,博士,E-mail:dengxh@tute.edu.cn
  • 作者简介:龙振宇(1998—),男,硕士研究生,主要研究方向为热处理工艺,E-mail:zhenyu@tute.edu.cn。
  • 基金资助:
    江苏省产学研合作项目(FZ20220658)

Numerical simulation of spray quenching of 6061 aluminum alloy gas cylinder

Long Zhenyu1, Deng Xiaohu1, Chen Ruibo2, Du Jizhu3, Ma Yongming4, Ma Yuanhao1, Xiu Yongshuai1, Xiao Feng1   

  1. 1. Tianjin Key Laboratory of High-Performance Precision Forming Manufacturing Technology and Equipment, Tianjin University of Technology and Education, Tianjin 300222, China;
    2. Ningbo Intelligent Machine Tool Research Institute Co., Ltd. of China National Machinery Institute Group, Ningbo Zhejiang 315700, China;
    3. Weichai Power Co., Ltd., Weifang Shandong 261061, China;
    4. HiSmart (Suzhou) Material Technology Co., Ltd., Suzhou Jiangsu 430048, China
  • Received:2025-03-03 Revised:2025-05-15 Online:2025-08-25 Published:2025-09-10

摘要: 采用ABAQUS有限元软件对6061铝合金气瓶喷淋淬火过程进行了仿真。在原模型基础上,考虑了工件大小和相邻喷淋区域相互叠加的因素,得到了不同喷淋淬火工艺参数(喷淋压力、喷嘴形状、喷淋角度、喷淋距离)下的温度场模拟结果。模拟结果表明,气瓶厚度方向温度场是非均匀的,且瓶体厚度每增加1 mm,冷却速率降低20 ℃/s,因此在气瓶不同位置应采用不同的喷淋条件。此外,发现瓶体的残余应力与瓶身长度关联较小,在瓶口与瓶身的拐角处存在高达246 MPa的残余应力。基于材料成分、固溶工艺参数和时效工艺参数计算得到气瓶的抗拉强度,并和试验结果进行了对比,吻合度较高,说明该仿真分析可用于气瓶淬火工艺的指导。喷淋压力越大,气瓶最终温度越低且气瓶不同位置温差越小;较扁嘴线状喷嘴,采用椭圆形喷嘴的温度均匀性更好;喷淋角度较大(60°)时,喷淋面较为均匀,重叠区域间隙较小;喷淋距离越小,喷淋均匀性越差。

关键词: 6061铝合金, 气瓶, 喷淋淬火, 数值计算, 温度场

Abstract: Spray quenching process of 6061 aluminum alloy gas cylinder was simulated by using ABAQUS finite element software. Based on the existing model and considering the size of the workpiece as well as the superposition of adjacent spray areas, the temperature field simulation results were obtained under various spray quenching process parameters, including spray pressure, nozzle shape, spray angle, and spray distance. The simulation results indicate that the temperature field in the thickness direction of the cylinder is non-uniform, with the cooling rate decreasing by 20 ℃/s for every 1 mm increase in the cylinder's thickness. Therefore, different spray conditions should be employed at various positions along the cylinder. In addition, it is found that the residual stress of the cylinder body is less related to the length of the cylinder body, and there is a residual stress of up to 246 MPa at the corner of the cylinder mouth and the cylinder body. Based on the material composition, solid solution process parameters, and aging process parameters, the strength of the gas cylinder is calculated and compared with the experimental results. The degree of agreement is high, indicating that the simulation analysis can be used to guide the quenching process of the gas cylinder. The higher the spray pressure is, the lower the final temperature of the cylinder and the smaller the temperature difference at different positions of the cylinder. Compared with the flat nozzle linear nozzle, the temperature uniformity of the elliptical nozzle is better. When the spray angle is larger (60°), the spray surface is more uniform and the gap between the overlapping areas is smaller. The smaller the spray distance, the worse the spray uniformity.

Key words: 6061 aluminum alloy, gas cylinder, spray quenching, numerical calculation, temperature field

中图分类号: