[1] 郑忱奕, 冼满峰, 陈秋林. 6061铝合金中厚板生产中晶粒度的控制方法[J]. 热加工工艺, 2023, 52(1): 48-51. Zheng Chenyi, Xian Manfeng, Chen Qiulin. Control method of grain size in production of 6061 aluminum alloy plate[J]. Hot Working Technology, 2023, 52(1): 48-51. [2] 魏金韬, 滕 越, 王 慧, 等. 电解渗氢对6061-T6铝合金拉伸性能和断裂过程的影响[J]. 腐蚀与防护, 2023, 44(3): 24-30. Wei Jintao, Teng Yue, Wang Hui, et al. Effect of electrolytic hydrogen permeation on tensile properties and fracture process of 6061-T6 aluminum alloy[J]. Corrosion and Protection, 2023, 44(3): 24-30. [3] 郭瑞超. 2024铝合金板材喷淋淬火传热机理与流变应力演化规律研究[D]. 西安: 西北工业大学, 2020. [4] 朱 兰. 雾化气体淬火过程应力场的数值模拟及实验研究[D]. 昆明: 昆明理工大学, 2016. [5] 王莉莉. 大直径厚壁压力气瓶淬火过程数值模拟[D]. 秦皇岛: 燕山大学, 2015. [6] Xia J, Zhao J M, Dou S. Friction characteristics analysis of symmetric aluminum alloy parts in warm forming process[J]. Symmetry, 2022, 14: 166. [7] Riahi M, Nazari H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation[J]. International Journal of Advanced Manufacturing Technology, 1994, 55(1): 143-152. [8] 温 柳, 刘露露, 高 萌, 等. 6061铝合金淬火冷却过程中的表面换热系数[J]. 金属热处理, 2011, 36(10): 59-62. Wen Liu, Liu Lulu, Gao Meng, et al. Surface heat transfer coefficient of 6061 aluminum alloy during quenching[J]. Heat Treatment of Metals, 2011, 36(10): 59-62. [9] Guo H, Zhou J, Sun H J, et al. Heat transfer modelling of friction stir lap welding of PP plastics and 6061 aluminium alloy[J]. Journal of Physics: Conference Series, 2022, 2338: 012018. [10] 胡理中. 复杂截面铝合金型材在线淬火过程界面换热研究[D]. 长沙: 湖南大学, 2014. [11] 陈 彬. 复杂截面6×××铝型材在线淬火实验及数值模拟[D]. 长沙: 中南大学, 2014. [12] 李彩文. 6×××铝合金在线淬火换热系数及数值模拟研究[D]. 长沙: 中南大学, 2011. [13] Wang Mengjun, Yang Gang, Huang Changqing, et al. Simulation of temperature and stress in 6061 aluminum alloy during online quenching process[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2168-2173. [14] 施鸿均, 杨弋涛, 张恒华, 等. 逆向法确定铝合金连铸喷水冷却的换热系数[J]. 特种铸造及有色合金, 2005, 25(9): 528-530. Shi Hongjun, Yang Yitao, Zhang Henghua, et al. Heat transfer coefficient of cooling water in continuous casting by inverse method[J]. Special Casting & Nonferrous Alloys, 2005, 25(9): 528-530. [15] 邓运来, 郭世贵, 熊创贤, 等. 7050铝合金喷水淬火参数对表面换热系数的影响[J]. 航空材料学报, 2010, 30(6): 21-26. Deng Yunlai, Guo Shigui, Xiong Chuangxian, et al. Effect of water spraying parameters on heat transfer coefficient of 7050 aluminum alloy during quench[J]. Journal of Aeronautical Materials, 2010, 30(6): 21-26. [16] 杜雄飞. 大直径厚壁压力气瓶热处理过程数值模拟与实验研究[D]. 秦皇岛: 燕山大学, 2015. [17] 郭瑞超, 陈子凌, 王志鑫, 等. 2024铝合金板材盐溶液介质喷淋淬火数值模拟研究[J]. 热加工工艺, 2023, 52(20): 146-151. Guo Ruichao, Chen Ziling, Wang Zhixin, et al. Numerical simulation on spray quenching of 2024 aluminum alloy plate in salt solution[J]. Hot Working Technology, 2023, 52(20): 146-151. [18] 郭世贵. 7050铝合金材料喷淋淬火的试验与模拟研究[D]. 长沙: 中南大学, 2010. [19] 黄 玮, 欧梅桂, 梁益龙, 等. 淬火冷速对51CrV4钢显微组织和力学性能的影响[J]. 材料热处理学报, 2024, 45(5): 135-141. Huang Wei, Ou Meigui, Liang Yilong, et al. Effect of quenching cooling rate on microstructure and mechanical properties of 51CrV4 steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(5): 135-141. [20] Xu R, Wang G, Jiang P. Spray cooling on enhanced surfaces: A review of the progress and mechanisms[J]. Journal of Electronic Packaging, 2022, 144(1): 21. [21] 王 葛, 王莉莉, 高静娜, 等. 30CrMo钢大直径厚壁压力气瓶淬火过程数值模拟[J]. 钢铁, 2015, 50(2): 61-69. Wang Ge, Wang Lili, Gao Jingna, et al. Numerical simulation on quenching process of the large-diameter thick-wall gas cylinder of 30CrMo steel[J]. Iron and Steel, 2015, 50(2): 61-69. [22] Dolan G P, Robinson J S. Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis[J]. Journal of Materials Processing Technology, 2004, 153-154: 346-351. [23] 康 雷. 7X50型铝合金淬火过程析出行为、温度场及应力场研究[D]. 沈阳: 东北大学, 2018. [24] 陈天华, 刘兆轩, 韩 群, 等. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. Chen Tianhua, Liu Zhaoxuan, Han Qun, et al. Research progress and influencing factors of the heat transfer enhancement of spray cooling[J]. CIESC Journal, 2023, 74(8): 3149-3170. [25] 曹盛强. 铝合金厚板喷淋淬火的非均匀换热与冷却特性研究[D]. 长沙: 中南大学, 2011. [26] Pautsch A G, Shedd T A. Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72[J]. International Journal of Heat & Mass Transfer, 2005, 48(15): 3167-3175. [27] Cheng W L, Liu Q N, Zhao R, et al. Experimental investigation of parameters effect on heat transfer of spray cooling[J]. Heat and Mass Transfer, 2010, 46(8-9): 911-921. [28] 王亚青, 刘明侯, 刘 东, 等. 喷雾冷却中散热面温度对无沸腾区换热特性的影响[J]. 中国激光, 2010, 37(1): 115-120. Wang Yaqing, Liu Minghou, Liu Dong, et al. Effect of test surface temperature on the non-boiling heat transfer performance in spray cooling[J]. Chinese Journal of Lasers, 2010, 37(1): 115-120. |