[1] 董绍平, 袁军国, 方德明, 等. 316L钢在含H2S、Cl-水溶液中的慢应变速率腐蚀试验研究[J]. 化工机械, 2001, 28(2): 79-81, 112. Dong Shaoping, Yuan Junguo, Fang Deming, et al. An experimental investigation on the slow strain rate corrosion of 316L stainless steel containing H2S and Cl-[J]. Chemical Engineering and Machinery, 2001, 28(2): 79-81, 112. [2] 樊恩想, 刘小欣, 吴欢欢. 激光选区熔化增材制造技术的发展[J]. 机械制造, 2021, 59(8): 45-49. Fan Enxiang, Liu Xiaoxin, Wu Huanhuan. Development of SLM additive manufacturing technology[J]. Machinery, 2021, 59(8): 45-49. [3] 温家浩, 杨中桂, 丁永春, 等. 选区激光熔化增材制造技术研究现状与展望[J]. 金属加工(热加工), 2023(10): 14-19. Wen Jiahao, Yang Zhonggui, Ding Yongchun, et al. Research status and prospect of selective laser melting additive manufacturing technology[J]. MW Metal Forming, 2023(10): 14-19. [4] 刘 艳. 316L粉末选择性激光熔化成形工艺及力学性能研究[D]. 兰州: 兰州理工大学, 2017. Liu Yan. Study on forming process and mechanical properties of 316L powders by selective laser melting[D]. Lanzhou: Lanzhou University of Technology, 2017. [5] Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11): 2132-2147. [6] 宋剑锋, 樊又铭, 焦朝旭, 等. 316L不锈钢粉末激光选区熔化成形仿真及单层多熔道形貌重构[J]. 中国激光, 2023, 50(24): 189-200. Song Jianfeng, Fan Youming, Jiao Zhaoxu, et al. Simulation of SLM formation of 316L stainless steel powder and reconstruction of single-layer multi-channel morphology[J]. Chinese Journal of Lasers, 2023, 50(24): 189-200. [7] 杨永强, 罗子艺, 苏旭彬, 等. 不锈钢薄壁零件选区激光熔化制造及影响因素研究[J]. 中国激光, 2011, 38(1): 60-67. Yang Yongqiang, Luo Ziyi, Su Xubin, et al. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(1): 60-67. [8] Sun H, Chu X, Luo C, et al. Selective laser melting for joining dissimilar materials: Investigations of interfacial characteristics and in situ alloying[J]. Metallurgical and Materials Transactions A, 2021, 52(4): 1-11. [9] 张立浩, 钱 波, 张朝瑞, 等. 金属增材制造技术发展趋势综述[J]. 材料科学与工艺, 2022, 30(1): 42-52. Zhang Lihao, Qian Bo, Zhang Chaorui, et al. Summary of development trend of metal additive manufacturing technology[J]. Materials Science and Technology, 2022, 30(1): 42-52. [10] 李胜峰, 杜开平, 沈 婕. 选区激光熔化工艺参数对气雾化316L不锈钢粉末成形制品性能的影响[J]. 热喷涂技术, 2019, 11(2): 58-67. Li Shengfeng, Du Kaiping, Shen Jie. Effect of selective laser melting process parameters on forming characteristics of 316L stainless steel powder prepared by gas atomization[J]. Thermal Spray Technology, 2019, 11(2): 58-67. [11] 董智豪, 郑志军, 彭 乐. 热处理对增材制造316L不锈钢组织各向异性的影响[J]. 金属热处理, 2021, 46(10): 45-52. Dong Zhihao, Zheng Zhijun, Peng Le. Effect of heat treatment on anisotropic microstructure of additive manufacturing 316L stainless steel[J]. Heat Treatment of Metals, 2021, 46(10): 45-52. [12] 边培莹. 热处理工艺对316L不锈钢粉末激光选区熔化成形的残余应力及组织的影响[J]. 材料热处理学报, 2019, 40(4): 90-97. Bian Peiying. Effect of heat treatment on residual stress and microstructure of 316L stainless steel powder formed by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2019, 40(4): 90-97. [13] 郑 磊, 徐 达, 鲁宇杰, 等. 激光增材制造316L不锈钢退火过程中微观组织演变和力学性能[J]. 金属热处理, 2024, 49(4): 66-77. Zheng Lei, Xu Da, Lu Yujie, et al. Microstructure evolution and mechanical properties of laser additive manufactured 316L stainless steel after annealing process[J]. Heat Treatment of Metals, 2024, 49(4): 66-77. [14] 徐孟奇, 谭峰亮, 蒋博文, 等. SLM成形316L不锈钢热处理过程中显微组织演变[J]. 热加工工艺, 2021, 50(10): 113-115, 118. Xu Mengqi, Tan Fengliang, Jiang Bowen, et al. Microstructure evolution of 316L stainless steel formed by SLM during heat treatment[J]. Hot Working Technology, 2021, 50(10): 113-115, 118. [15] Kumaran M, Senthilkumar V. Influence of heat treatment on stainless steel 316L alloy manufactured by hybrid additive manufacturing using powder bed fusion and directed energy deposition[J]. Metals and Materials International, 2022, 29(2): 467-484. [16] Kong D, Ni X, Dong C, et al. Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting[J]. Materials Letters, 2018, 235: 1-5. [17] Iuliia M, Christian K, Aleksei O, et al. On the heat treatment of selective-laser-melted 316L[J]. Journal of Materials Engineering and Performance, 2022, 32(10): 4295-4305. [18] Jazaeri M S M, Mahdi Y, Alavi Z S R, et al. Influence of low temperature heat treatment on microstructure, corrosion resistance and biological performance of 316L stainless steel manufactured by selective laser melting[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 40: 68-74. [19] Revilla R I, Calster M V, Raes M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: A comparative study bringing insights into the impact of microstructure on their passivity[J]. Corrosion Science, 2020, 176: 108914. [20] Laleh M, Hughes A E, Xu W, et al. Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing[J]. Corrosion Science, 2020, 165: 108412. [21] 任垚嘉. 激光选区熔化316L不锈钢组织和性能研究[D]. 西安: 西安建筑科技大学, 2019. Ren Yaojia. Microstructure and properties of 316L stainless steel prepared by selective laser melting[D]. Xi'an: Xi'an University of Architecture and Technology, 2019. [22] Siao Y H, Wen C D. Influence of process parameters on heat transfer of molten pool for selective laser melting[J]. Computational Materials Science, 2021, 193: 110388. [23] Qi C, Sebastian T, Nick B, et al. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel[J]. Materials Science and Engineering A, 2021, 821: 141611. [24] 邢梦楠, 胡昕明, 杨雨泽, 等. 固溶热处理对316L奥氏体不锈钢性能的影响[J]. 轧钢, 2024, 41(2): 44-49, 58. Xing Mengnan, Hu Xinming, Yang Yuze, et al. Effect of solid solution heat treatment process on properties of 316L austenitic stainless steel[J]. Steel Rolling, 2024, 41(2): 44-49, 58. [25] 杨登翠. 选区激光熔化316L不锈钢制备工艺、组织性能及耐蚀性研究[D]. 北京: 北京科技大学, 2023. Yang Dengcui. Study on preparation, microstructure, property and corrosion resistance of 316L stainless steel by selective laser melting[D]. Beijing: University of Science and Technology Beijing, 2023. [26] Ma J, Zhang J, Liu W, et al. Suppressing pore-boundary separation during spark plasma sintering of tungsten[J]. Journal of Nuclear Materials, 2013, 438(1-3): 199-203. [27] Chen X, Li Y, Zhu Y, et al. Improved corrosion resistance of 316LN stainless steel performed by rotationally accelerated shot peening[J]. Applied Surface Science, 2019, 481: 1305-1312. [28] Liu J, Han E H, Song Y, et al. Effect of twins on the corrosion behavior of Mg-5Y-7Gd-1Nd-0.5Zr Mg alloy[J]. Journal of Alloys and Compounds, 2018, 757: 356-363. [29] Sun Z, Tan X, Tor S B, et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J]. Materials and Design, 2016, 104: 197-204. [30] Schino A D, Kenny J M, Abbruzzese G. Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel[J]. Journal of Materials Science, 2002, 37: 5291-5298. [31] Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials[J]. Corrosion Science, 2012, 62: 90-94. |