[1] 刘宇飞. 新型挤出式金属3D打印技术研究[D]. 北京: 北京工业大学, 2021. Liu Yufei. Research on novelextrusion-based metal 3D printing technology[D]. Beijing: Beijing University of Technology, 2021. [2] Bakhtiarian M, Omidvar H, Mashhuriazar A, et al. The effects of SLM process parameters on the relative density and hardness of austenitic stainless steel 316L[J]. Journal of Materials Research and Technology, 2024, 29: 1616-1629. [3] Zhou Y, Duan L, Li F, et al. Effect of heat treatment on the microstructure and mechanical property of W/316L multi-material fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 890: 161841. [4] Xu H, Tian T, Hua B, et al. Effect of in-situ rolling and heat treatment on microstructure, mechanical and corrosion properties of wire-arc additively manufactured 316L stainless steel[J]. Journal of Materials Research and Technology, 2023, 27: 3349-3361. [5] Han S B, Song H, Park S H. Improvement of tensile properties through Nb addition and heat treatment in additively manufactured 316L stainless steel using directed energy deposition[J]. Journal of Materials Research and Technology, 2024, 29: 4806-4821. [6] 刘 斌, 叶红叶, 王玉香, 等. 316L/POM复合材料熔融沉积成型件的催化脱脂工艺研究[J]. 粉末冶金技术, 2022, 40(6): 510-515. Liu Bin, Ye Hongye, Wang Yuxiang, et al. Research on catalytic debinding process of 316L/POM composite fused deposition modeling parts[J]. Powder Metallurgy Technology, 2022, 40(6): 510-515. [7] Shi R, Wood M, Heo T W, et al. Towards understanding particle rigid-body motion during solid-state sintering[J]. Journal of the European Ceramic Society, 2021, 41(16): 211-231. [8] Forouzan F, Surki Aliabad R, Hedayati A, et al. Kinetics of carbon enrichment in austenite during partitioning stage studied via in-situ synchrotron XRD[J]. Materials, 2023, 16(4): 1557. [9] 王玉香. 316L/POM复合材料3D打印及后处理工艺研究[D]. 广州: 华南理工大学, 2020. Wang Yuxiang. Research on 3D printing and post-processing technology of 316L/POM composite material[D]. Guangzhou: South China University of Technology, 2020. [10] Zheng Y, Wang F, Li C, et al. Effect of microstructure and precipitates on mechanical properties of Cr-Mo-V alloy steel with different austenitizing temperatures[J]. ISIJ International, 2018, 58(6): 1126-1135. [11] Bourgeois L, Zhang Y, Zhang Z, et al. Transforming solid-state precipitates via excess vacancies[J]. Nature Communications, 2020, 11(1): 1248. [12] Ternero F, Rosa L G, Urban P, et al. Influence of the total porosity on the properties of sintered materials—A review[J]. Metals, 2021, 11(5): 730. [13] Ren P, Chen X, Wang C, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel[J]. Acta Metallurgica Sinica, 2021, 58(6): 771-780. [14] 汪家梅, 苏豪展, 陈 凯, 等. 晶界碳化物和冷变形对600合金应力腐蚀开裂的影响规律[J]. 腐蚀与防护, 2022, 43(4): 1-6, 46. Wang Jiamei, Su Haozhan, Chen Kai, et al. Influence of grain boundary carbides and cold deformation on stress corrosion cracking of alloy 600[J]. Corrosion and Protection, 2022, 43(4): 1-6, 46. [15] Zhou S, Xie M, Wu C, et al. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms[J]. Journal of Materials Science and Technology, 2022, 104: 81-87. |