[1] 郭晓峰, 巩建鸣, 姜 勇. 超超临界锅炉管用T92/P92钢研究进展[J]. 压力容器, 2011, 28(5): 55-61. Guo Xiafeng, Gong Jianming, Jiang Yong. Research advances of T92/P92 steel for boiler pipes of USC power plants[J]. Pressure Vessel Technology, 2011, 28(5): 55-61. [2] 程 佳, 孙锦辉, 李 犇. 锅炉专用高温材料及焊接技术的发展研究[J]. 冶金与材料, 2021, 41(5): 47-48. [3] 黄庆洋. 高温复杂加载条件下高铬钢材料的力学响应和多机制损伤研究[D]. 广州: 华南理工大学, 2021. [4] 程洪礼. 两种先进反应堆用铁素体/马氏体钢的高温重离子辐照效应研究[D]. 武汉: 华中科技大学, 2020. [5] 王海朋. 超临界机组主蒸汽管道弯管失效机理研究[D]. 福州: 福州大学, 2018. [6] 赵勇桃, 姜亚君, 鲁海涛, 等. 热处理对国外P92钢显微组织及晶粒度的影响[J]. 金属热处理, 2020, 45(9): 57-62. Zhao Yongtao, Jiang Yajun, Lu Haitao, et al. Effect of heat treatment on microstructure and grain size of imported P92 steel[J]. Heat Treatment of Metals, 2020, 45(9): 57-62. [7] 王 瑜, 坚永鑫, 胡鹏飞, 等. 多次热处理对超超临界锅炉用P92钢显微组织及硬度的影响[J]. 铸造技术, 2023, 44(11): 997-1003. Wang Yu, Jian Yongxin, Hu Pengfei, et al. Effect of the tempering times on the microstructure and hardness of P92 steel for USC boilers[J]. Foundry Technology, 2023, 44(11): 997-1003. [8] 宁保群, 刘永长, 徐荣雷, 等. 形变热处理对T91钢组织和性能的影响[J]. 材料研究学报, 2008(2): 191-196. Ning Baoquan, Liu Yongchang, Xu Ronglei, et al. Effects of thermomechanical treatment on microstructure and mechanical properties of T9l steel[J]. Chinese Journal of Materials Research, 2008(2): 191-196. [9] Abe F, Taneike M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides[J]. International Journal of Pressure Vessels and Piping, 2007, 84(1/2): 3-12. [10] Klueh R L, Hashimoto N, Maziasz P J, et al. Development of new nano-particle strengthened martensitic steels[J]. Scripta Materialia, 2005, 53(3): 275-280. [11] 段宝玉, 刘宗昌, 白雅琼, 等. P92钢的过冷奥氏体等温转变曲线及显微组织[J]. 机械工程材料, 2016, 40(12): 16-20. Duan Baoyu, Liu Zhongchang, Bai Yaqiong, et al. Undercooled austenite isothermal transformation diagram and microstructure of P92 steel[J]. Materials for Mechanical Engineering, 2016, 40(12): 16-20. [12] Abbaszadeh K, Saghafian H, Kheirandish S. Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel[J]. Journal of Materials Science and Technology, 2012, 28(4): 336-342. [13] Gomez M, Rancel L, Escudero E, et al. Phase transformation under continuous cooling conditions in medium carbonmicroalloyed steels[J]. Journal of Materials Science and Technology, 2014, 30(5): 511-516. [14] Porter D A, Easterling K E, Sherif M Y. Phase Transformations in Metals and Alloys[M]. Third Edition. Boca Raton: CRC Press, 2009: 401-404. [15] 牟俊生. 薄带连铸Fe-3.0%Si无取向硅钢第二相粒子固溶与析出行为研究[D]. 沈阳: 东北大学, 2014. [16] 尹 胜. 形变热处理强化CLAM钢的多尺度组织调控与高温力学性能[D]. 贵州: 贵州大学, 2022. [17] 李广龙, 严 玲, 李文斌, 等. 冷却速度对EH40钢组织演变及硬度的影响[J]. 热加工工艺, 2024, 53(22): 140-144, 149. Li Gonglong, Yan Ling, Li Wenbin, et al. Effect of cooling rate on microstructure evolution and hardness of EH40 steel[J]. Hot Working Technology, 2024, 53(22): 140-144, 149. [18] 张鹏程, 武会宾, 唐 荻, 等. 低碳微合金钢中Nb、V、Ti碳氮化物的回溶研究[J]. 金属热处理, 2007, 32(6): 41-44. Zhang Pengcheng, Wu Huibin, Tang Di, et al. Resolution of Nb, V and Ti carbonitride precipitates in low carbon microalloyed steels[J]. Heat Treatment of Metals, 2007, 32(6): 41-44. [19] 刘自权, 栗克建, 张龙柱, 等. 超快冷工艺制备的超高强度马氏体钢的显微组织和性能[J]. 金属热处理, 2024, 49(2): 32-39. Liu Ziquan, Li Kejian, Zhang Longzhu, et al. Microstructure and properties of ultra-high strength martensitic steel prepared by ultra-fast cooling process[J]. Heat Treatment of Metals, 2024, 49(2): 32-39. [20] 何 博, 彭天恩, 胡学文, 等. Nb对高Ti耐候钢连续冷却后显微组织及硬度的影响[J]. 金属热处理, 2022, 47(8): 46-51. He Bo, Peng Tianen, Hu Xuewen, et al. Effect of Nb on microstructure and hardness of high Ti weathering steel after continuous cooling[J]. Heat Treatment of Metals, 2022, 47(8): 46-51. |