[1] Lin Jianjun, Lv Yaohui, Liu Yuxin, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 19-29. [2] 罗 震, 张 禹, 贾 鹏. Ti-6Al-4V钛合金微束等离子弧堆焊增材制造工艺研究[J]. 焊接, 2016(4): 13-16, 73. Luo Zhen, Zhang Yu, Jia Peng. Additive manufacturing of Ti-6Al-4V titanium alloy parts based on micro-plasma arc surfacing[J]. Welding and Joining, 2016(4): 13-16, 73. [3] 禹 东, 乔柳平, 邹 楠, 等. 热处理工艺对Ti-6Al-4V等离子弧熔丝增材钛合金显微组织和力学性能的影响[J]. 金属加工(热加工), 2023(11): 1-6. Yu Dong, Qiao Liuping, Zou Nan, et al. Effect of thermal treatment on microstructure and mechanical properties of Ti-6Al-4V alloy manufactured by plasma wire deposition[J]. MW Metal Forming, 2023(11): 1-6. [4] 程 奎. 等离子弧微铸锻复合增材制造TC4钛合金的微观组织与力学性能[D]. 武汉: 华中科技大学, 2023. Cheng Kui. Microstructure and mechanical properties of Ti-6Al-4V prepared by hybrid plasma arc deposition and micro-rolling additive manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2023. [5] 吴向举, 郭登极, 林建军, 等. 等离子弧增材制造Ti-6Al-4V工艺参数对成形性和显微硬度的影响[J]. 中国表面工程, 2023, 36(6): 186-194. Wu Xiangju, Guo Dengji, Lin Jianjun, et al. Effects of process parameters on formability and microhardness in plasma arc additive manufacturing of Ti-6Al-4V alloy[J]. China Surface Engineering, 2023, 36(6): 186-194. [6] 潘子钦, 张海鸥, 王桂兰, 等. 等离子弧熔丝增材制造TC4-DT钛合金组织与疲劳断裂行为[J]. 特种铸造及有色合金, 2022, 42(9): 1154-1159. Pan Ziqin, Zhang Haiou, Wang Guilan, et al. Microstructure and fatigue fracture behavior of TC4-DT titanium alloy by plasma arc and wire additive manufacturing[J]. Special Casting and Nonferrous Alloys, 2022, 42(9): 1154-1159. [7] Wang Chong, Suder Wojciech, Ding Jialuo, et al. The effect of wire size on high deposition rate wire and plasma arc additive manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2021, 288: 116842. [8] 秦伟铭, 王克鸿, 叶约翰, 等. TC4-TA1等离子弧增材制造单道模型及成形研究[J]. 热加工工艺, 2019, 48(14): 58-62. Qin Weiming, Wang Kehong, Ye Yuehan, et al. Research on single-bead model and forming of TC4-TA1 plasma arc additive manufacturing[J]. Hot Working Technology, 2019, 48(14): 58-62. [9] 张明朗, 柏关顺, 李承德, 等. 等离子电弧增材TA15钛合金组织与性能研究[J]. 重型机械, 2022(6): 44-47. Zhang Minglang, Bai Guanshun, Li Chengde, et al. Study on microstructure and properties of TA15 titanium alloy fabricated by plasma arc additive manufacturing[J]. Heavy Machinery, 2022(6): 44-47. [10] Feng Yuehai, Zhan Bin, He Jie, et al. The double-wire feed and plasma arc additive manufacturing process for deposition in Cr-Ni stainless steel[J]. Journal of Materials Processing Technology, 2018, 259: 206-215. [11] Lin Jianjun, Lv Yaohui, Guo Dengji, et al. Enhanced strength and ductility in thin Ti-6Al-4V alloy components by alternating the thermal cycle strategy during plasma arc additive manufacturing[J]. Materials Science and Engineering A, 2019, 759: 288-297. [12] 林建军. 脉冲等离子弧增材制造Ti-6Al-4V合金组织演变机理及力学性能研究[D]. 上海: 上海交通大学, 2019. Lin Jianjun. Study on mechanism of microstructure evolution and mechanical properties of Ti-6Al-4V alloy deposited by pulsed plasma arc additive manufacturing[D]. Shanghai: Shanghai Jiao Tong University, 2019. [13] Xie Yong, Gong Mengcheng, Zhang Ruize, et al. Grain boundary discontinuity and performance improvement mechanism of wire arc additive manufactured Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2021, 869: 159287. [14] 王 林, 华学明, 沈 忱, 等. 等离子电弧双丝增材制造Ti-48Al合金组织特征[J]. 焊接学报, 2024, 45(2): 1-6. Wang Lin, Hua Xueming, Shen Chen, et al. Investigation on microstructure characteristics of Ti-48Al alloy fabricated using twin-wire directed energy deposition plasma arc[J]. Transactions of The China Welding Institution, 2024, 45(2): 1-6. [15] 王益可, 李仁花, 陈玉华, 等. 电弧增材制造TC4微观组织调控及力学性能研究[J]. 精密成形工程, 2024, 16(5): 115-123. Wang Yike, Li Renhua, Chen Yuhua, et al. Microstructure regulation and mechanical properties of TC4 titanium alloy by wire arc additive manufacturing[J]. Journal of Netshape Forming Engineering, 2024, 16(5): 115-123. [16] Lin Jianjun, Lv Yaohui, Liu Yuxin, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing[J]. Materials and Design, 2016, 102: 30-40. [17] 弭光宝, 谭 勇, 陈 航, 等. 增材制造600 ℃高温钛合金研究进展[J]. 航空材料学报, 2024, 44(1): 15-30. Mi Guangbao, Tan Yong, Chen Hang, et al. Progress on additive manufacturing of 600 ℃ high-temperature titanium alloys[J]. Journal of Aeronautical Materials, 2024, 44(1): 15-30. [18] 杨 义, 徐 锋, 黄爱军, 等. 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J]. 金属学报, 2005, 41(7): 713-720. Yang Yi, Xu Feng, Huang Aijun, et al. Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α+β phase field[J]. Acta Metallurgica Sinica, 2005, 41(7): 713-720. |