[1] 刘 倩, 郑小平, 张荣华, 等. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220. Liu Qian, Zheng Xiaoping, Zhang Ronghua, et al. Medium manganese high strength steel for automotive application: Status quo and prospects[J]. Materials Reports, 2019, 33(7): 1215-1220. [2] 宋仁伯, 霍巍丰, 周乃鹏, 等. Fe-Mn-Al-C系中锰钢的研究现状与发展前景[J]. 工程科学学报, 2020, 42(7): 814-828. Song Renbo, Huo Weifeng, Zhou Naipeng, et al. Research progress and prospect of Fe-Mn-Al-C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. [3] 韩 赟, 刘华赛, 肖宝亮. 我国汽车用钢开发应用现状及发展趋势[J]. 轧钢, 2024, 41(5): 108-120. Han Yun, Liu Huasai, Xiao Baoliang. Progress in the development and application of automotive steels in China[J]. Steel Rolling, 2024, 41(5): 108-120. [4] 柴金荣. 中锰钢组织、热处理工艺和性能的研究现状[J]. 机械工程材料, 2024, 48(12): 9-18. Chai Jinrong. Research status on microstructure, heat treatment process and properties of medium manganese steel[J]. Materials for Mechanical Engineering, 2024, 48(12): 9-18. [5] 刘 腾, 朱政强. 第三代汽车用中锰钢研究现状[J]. 兵器材料科学与工程, 2019, 42(6): 102-108. Liu Teng, Zhu Zhenqiang. Research status of medium manganese steel for the 3rd generation automobile sheet[J]. Ordnance Material Science and Engineering, 2019, 42(6): 102-108. [6] Zou Y, Xu Y B, Wang G, et al. Improved strength-ductility-toughness balance of a precipitation-strengthened low-carbon medium-Mn steel by adopting intercritical annealing- tempering process[J]. Materials Science and Engineering A, 2021, 802: 140636. [7] Li Z C, Zhang X T, Mou Y J, et al. The impact of intercritical annealing in conjunction with warm deformation process on microstructure, mechanical properties and TRIP effect in medium-Mn TRIP steels[J]. Materials Science and Engineering A, 2019, 746: 363-371. [8] Wang T, Hu J, Misra R D K. Microstructure evolution and strain behavior of a medium Mn TRIP/TWIP steel for excellent combination of strength and ductility[J]. Materials Science and Engineering A, 2019, 753: 99-108. [9] 张丽凤, 王社则, 田博彤. 冷轧汽车中锰钢的逆相变退火与组织性能研究[J]. 矿冶工程, 2024, 44(5): 159-162. Zhang Lifeng, Wang Sheze, Tian Botong. Microstructure and properties of cold rolled medium manganese steel used in automobile after austenitic reverse transformation by annealing[J]. Mining and Metallurgical Engineering, 2024, 44(5): 159-162. [10] 胡进朋, 万德成, 李 杰, 等. 临界区退火温度对中锰钢组织性能和变形行为的影响[J]. 材料热处理学报, 2022, 43(2): 104-111. Hu Jinpeng, Wan Decheng, Li Jie, et al. Effect of intercritical annealing temperature on microstructure, properties and deformation behavior of medium manganese steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(2): 104-111. [11] 苏张磊, 李 玮, 罗志敏. 高强塑积汽车用中锰钢的热变形与组织性能[J]. 锻压技术, 2022, 47(8): 241-248. Su Zhanglei, Li Wei, Luo Zhimin. Hot deformation and microstructure properties on automotive medium manganese steel with high strength-ductility balance[J]. Forging and Stamping Technology, 2022, 47(8): 241-248. [12] 沈国慧, 胡 斌, 杨占兵, 等. 回火温度对含δ铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174. Shen Guohui, Hu Bin, Yang Zhanbing, et al. Influence of tempering temperature on mechanical properties and microstructures of high-Al-contained medium Mn steel having δ-ferrite[J]. Acta Metallurgica Sinica, 2022, 58(2): 165-174. [13] Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing[J]. Materials Science and Engineering A, 2019, 745: 212-220. [14] 邹 英, 刘华赛, 韩 赟, 等. 基于退火路径的中锰钢组织转变与力学性能[J]. 钢铁, 2022, 57(4): 97-104. Zou Ying, Liu Huasai, Han Yun, et al. Microstructure evolution and mechanical properties of medium manganese steel based on annealing path[J]. Iron and Steel, 2022, 57(4): 97-104. [15] Zhang Y, Wang H, Sun H, et al. Effects of annealing temperature on the microstructure, textures and tensile properties of cold-rolled Fe-13Cr-4Al alloys with different Nb contents[J]. Materials Science and Engineering A, 2020, 798: 140236. [16] Sudipta M, Govardhana P, Bangmaya S, et al. A comprehensive study on the effect of annealing temperature on the tensile and impact behavior of automotive-grade medium manganese steel (Fe-6.22Mn-0.18C)[J]. Journal of Materials Engineering and Performance, 2023, 33(11): 5348-5363. [17] 张丽凤, 王社则, 田博彤. 不同工艺热处理后汽车用中锰钢的显微组织与力学性能[J]. 机械工程材料, 2023, 47(10): 55-61. Zhang Lifeng, Wang Sheze, Tian Botong. Microstructure and mechanical properties of medium manganese steel for automobile after different heat treatments[J]. Materials for Mechanical Engineering, 2023, 47(10): 55-61. [18] Long X Y, Zhao G C, Zhang F C, et al. Evolution of tensile properties with transformation temperature in medium-carbon carbide-free bainitic steel[J]. Materials Science and Engineering A, 2020, 775: 138964. [19] 黄文静, 陈 健, 裘 欣, 等. 时效处理对超高强度20Mn2Cr汽车钢组织性能的影响[J]. 钢铁研究学报, 2024, 36(5): 627-639. Huang Wenjing, Chen Jian, Qiu Xin, et al. Effect of aging treatment on microstructure and mechanical properties of ultra-high strength 20Mn2Cr automotive steel[J]. Journal of Iron and Steel Research, 2024, 36(5): 627-639. [20] 校振华, 冯亚磊, 冯启生, 等. 高强汽车中锰钢的热压缩变形行为研究[J]. 精密成形工程, 2023, 15(2): 125-131. Xiao Zhenhua, Feng Yalei, Feng Qisheng, et al. Hot compression deformation behavior of high strength medium manganese steel for automobile[J]. Journal of Netshape Forming Engineering, 2023, 15(2): 125-131. [21] Torganchuk V I, Belyakov A N. Microstructure and mechanical properties of medium manganese steel after different deformation and thermal treatments[J]. Bulletin of the Russian Academy of Sciences: Physics, 2020, 84(7): 867-870. [22] Yang D P, Du P J, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. Journal of Materials Science and Technology, 2021, 75: 205-215. |