[1] 赵 国. 贝氏体钢轨接头微观组织及伤损研究[D]. 北京: 中国铁道科学研究院, 2013. Zhao Guo. The research on microstructure and failure of bainitic joint[D]. Beijing: China Academy of Railway Sciences, 2013. [2] 陈 琛, 张志伟, 单宽宽, 等. 热处理工艺对钢板组织性能的影响研究[J]. 机械科学与技术, 2018, 37(9): 1459-1464. Chen Chen, Zhang Zhiwei, Shan Kuankuan, et al. Research of effect of heat treatment on microstructure and property of steel plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(9): 1459-1464. [3] Huang Yuyin, Li Qiangguo, Huang Xuefei, et al. Effect of bainitic isothermal transformation plus Q&P process on the microstructure and mechanical properties of 0.2C bainitic steel[J]. Materials Science and Engineering A, 2016, 678: 339-346. [4] 郭永生. 贝氏体区等温处理对Fe-1.7Mn-1.3Al-0.5C钢微观结构及拉伸性能影响[D]. 沈阳: 东北大学, 2014. Guo Yongsheng. Effect of austempering on microstructures and tensile properties of Fe-1.7Mn-1.3Al-0.5C steels[D]. Shenyang: Northeastern University, 2014. [5] 高古辉, 张 寒, 白秉哲. 回火温度对Mn系低碳贝氏体钢的低温韧性的影响[J]. 金属学报, 2011, 47(5): 513-519. Gao Guhui, Zhang Han, Bai Bingzhe. Effect of tempering temperature on low temperature impact toughness of a low carbon Mn-series bainitic steel[J]. Acta Metallurgica Sinica, 2011, 47(5): 513-519. [6] 鲁修宇, 刘 静, 贾 涓, 等. 回火温度对高强度低碳贝氏体钢组织与性能的影响[J]. 金属热处理, 2012, 37(1): 72-76. Lu Xiuyu, Liu Jing, Jia Juan, et al. Effect of tempering temperature on mechanical properties and microstructure of high strength low carbon bainitic steel[J]. Heat Treatment of Metals, 2012, 37(1): 72-76. [7] Syn C K, Fultz B, Morris J W. Mechanical stability of retained austenite in tempered 9Ni steel[J]. Metallurgical Transactions A, 1978, 9(11): 1635-1640. [8] 赵佳莉, 张福成, 于宝东, 等. 70Si3MnCrMo钢中贝氏体及其回火稳定性[J]. 钢铁, 2017, 52(1): 71-80. Zhao Jiali, Zhang Fucheng, Yu Baodong, et al. Bainite microstructure and its tempering stability of 70Si3MnCrMo steel[J]. Iron and Steel, 2017, 52(1): 71-80. [9] 易 敏. 1000 MPa级低碳贝氏体抽油杆用钢的研制开发[D]. 沈阳: 东北大学, 2015. Yi Min. Development of 1000 MPa low carbon bainitic steel for sucker rod[D]. Shenyang: Northeastern University, 2015. [10] Wang K, Tan Z, Gao G, et al. Ultrahigh strength-toughness combination in bainitic rail steel: The determining role of austenite stability during tempering[J]. Materials Science and Engineering A, 2016, 662: 162-168. [11] Gao G H, Liu R, Wang K, et al. Role of retained austenite with different morphologies on sub-surface fatigue crack initiation in advanced bainitic steels[J]. Script Materialia, 2020, 184: 12-18. [12] 于 洋. Mn-Si-Cr系贝/马复相高强钢超高周疲劳行为及机理研究[D]. 北京: 清华大学, 2010. Yu Yang. Study on very high cycle fatigue behaviors and mechanism of Mn-Si-Cr series bainite/martensite duplex-phase high strength steels[D]. Beijing: Tsinghua University, 2010. [13] 刘 晓, 张明星, 陈大明, 等. Si-Mn-Mo系贝氏体钢的CCT图[J]. 金属学报, 1993, 29(3): 1-5. Liu Xiao, Zhang Mingxing, Chen Daming, et al. CCT diagram of Si-Mn-Mo alloy system bainitic steels[J]. Acta Metallurgica Sinica, 1993, 29(3): 1-5. [14] Kang M K, Chen D M, Yang S P, et al. The time-temperature-transformation diagram within the medium temperature range in some alloy steels[J]. Metallurgical Transactions A, 1992, 23: 785-795. [15] Reisner G, Werner E A, Kerschbaummayr P, et al. The modeling of retained austenite in low-alloyed TRIP steels[J]. JOM, 1997, 49(9): 62-65. [16] 万响亮, 胡 锋, 成 林, 等. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511. Wan Xiangliang, Hu Feng, Cheng Lin, et al. Influence of two-step bainite transformation on toughness in medium-carbon micro/nano-structured steel[J]. Acta Metallurgica Sinica, 2019, 55(12): 1503-1511. [17] 黄 龙, 邓想涛, 刘 佳, 等. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324. Huang Long, Deng Xiangtao, Liu Jia, et al. Relationship between retained austenite stability and cryogenic impact toughness in 0.12C-3.0Mn low carbon medium manganese steel[J]. Acta Metallurgica Sinica, 2017, 53(3): 316-324. [18] 方鸿生, 王家军, 杨志刚, 等. 贝氏体相变[M]. 北京: 科学出版社, 1999. [19] 黄维刚, 方鸿生, 郑燕康. 硅对Mn-B系空冷贝氏体钢组织与性能的影响[J]. 材料热处理学报, 1997, 18(1): 10-15. Huang Weigang, Fang Hongsheng, Zheng Yankang. Effect of silicon content on the microstructure and properties in Mn-B air cooled bainitic steel[J]. Transactions of Materials and Heat Treatment, 1997, 18(1): 10-15. [20] 郭可信. 合金钢中的碳化物[J]. 金属学报, 1957(3): 305-321. [21] 张正延. 高Nb低碳钢中Mo对纳米级析出相及组织性能的影响研究[D]. 沈阳: 东北大学, 2015. Zhang Zhengyan. Effect of Mo on the nanometer-sized precipitates, microstructure and properties of high Nb low carbon steel[D]. Shenyang: Northeastern University, 2015. [22] 雷晓维, 高万夫, 冯耀荣, 等. Q-P-T工艺对20SiMn2MoV钢组织与性能的影响[J]. 材料热处理学报, 2013, 34(11): 138-144. Lei Xiaowei, Gao Wanfu, Feng Yaorong, et al. Influence of quenching-partitioning-tempering process on microstructure and properties of 20SiMn2MoV steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(11): 138-144. [23] 谢振家, 尚成嘉, 周文浩, 等. 低合金多相钢中残余奥氏体对塑性和韧性的影响[J]. 金属学报, 2016, 52(2): 224-232. Xie Zhenjia, Shang Chengjia, Zhou Wenhao, et al. Effect of retained austenite on ductility and toughness of a low alloyed multiphase steel[J]. Acta Metallurgica Sinica, 2016, 52(2): 224-232. [24] 卢 峰, 康 健, 王 超, 等. 回火温度对Q960级高强结构钢组织及力学性能的影响[J]. 钢铁, 2012, 47(2): 92-95. Lu Feng, Kang Jian, Wang Chao, et al. Effects of tempering temperature on microstructure and mechanical properties for Q960 high-strength structural steel plates[J]. Iron and Steel, 2012, 47(2): 92-95. [25] 苏 钰, 符仁钰, 李 麟, 等. 低碳含硅TRIP钢断裂机理的研究[J]. 上海大学学报(自然科学版), 2006, 12(4): 423-427. Su Yu, Fu Renyu, Li Lin, et al. Fracture mechanism of low carbon TRIP steel with Si[J]. Journal of Shanghai University: Natural Science Edition, 2006, 12(4): 423-427. [26] 刘 强, 江海涛, 唐 荻, 等. TRIP钢中残余奥氏体相变与断裂机制研究[J]. 塑性工程学报, 2009, 16(1): 156-161. Liu Qiang, Jiang Haitao, Tang Di, et al. Transformation behavior of retained austenite in TRIP steel under stress-strain[J]. Journal of Plasticity Engineering, 2009, 16(1): 156-161. |