[1] 王 勇. 低合金调质高强钢焊接工艺研究进展[J]. 应用能源技术, 2009(8): 11-13. Wang Yong. Research status and developments on weld procedure of low-alloy Q+A High strength steel[J]. Applied Energy Technology, 2009(8): 11-13. [2] 魏 然. 爆炸冲击下车身结构FH机理及多学科优化研究[D]. 南京: 南京理工大学, 2017. Wei Ran. Protection Mechanism and multidisciplinary optimization of vehicle body structure under blast shock[D]. Nanjing: Nanjing University of Science and Technology, 2017. [3] 顾 晨, 郑 磊, 葛 琛, 等. TNT埋爆载荷下700 MPa高强韧钢变形行为及仿真分析[J]. 钢铁, 2022, 57(9): 130-137. Gu Chen, Zheng Lei, Ge Chen, et al. Deformation behavior and simulation of 700 MPa steel subjected to TNT buried explosion load[J]. Iron and Steel, 2022, 57(9): 130-137. [4] 赵荣贵, 杨 阳, 王晓东, 等. 高强度防爆钢显微组织和抗爆轰性能研究[J]. 兵器材料科学与工程, 2020, 43(5): 86-90. Zhao Ronggui, Yang Yang, Wang Xiaodong, et al. Study on microstructure and anti-detonation performance of high strength explosion-proof steel[J]. Ordnance Materials Science and Engineering, 2020, 43(5): 86-90. [5] 徐祖耀. 淬火-碳分配-回火(Q-P-T)工艺浅介[J]. 金属热处理, 2009, 34(6): 1-8. Xu Zuyao. A brief introduction to quenching-partitioning-tempering (Q-P-T) process[J]. Heat Treatment of Metals, 2009, 34(6): 1-8. [6] Ondicho I, Alunda B, Owino D, et al. Revealing a transformation-induced plasticity(TRIP) phenomenon in a medium-entropy alloy[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. [7] Peng X C, Guo H J, Zhang X F, et al. Strengthening and control of second-phase particle precipitation in ferritic/austenitic/martensitic heat-resistant alloys: A review[J]. Journal of Iron and Steel Research International, 2024, 31(1): 3-23. [8] 戎咏华, 陈乃录. 淬火-分配-回火工艺和多循环淬火-分配-回火工艺[J]. 热处理, 2011, 26(5): 1-10. Rong Yonghua, Chen Nailu. Quenching- partitioning-tempering and multicycle quenching-partitioning-tempering processes[J]. Heat Treatment, 2011, 26(5): 1-10. [9] Jia X, Hao Q, Zuo X, et al. High hardness and toughness of white cast iron: The proposal of a novel process[J]. Materials Science and Engineering A, 2014, 618: 96-103. [10] Jia X, Zuo X, Liu Y, et al. High wear resistance of white cast iron treated by novel process: Principle and mechanism[J]. Metallurgical and Materials Transactions A, 2015, 46(12): 5514-5525. [11] 黎 雨, 李 伟, 金学军. 淬火-配分-回火(QPT)钢的研究进展[J]. 中国材料进展, 2019, 38(7): 631-640, 650. Li Yu, Li Wei, Jin Xuejun. Review of quenching-partitioning-tempering (QPT) steels[J]. Materials China, 2019, 38(7): 631-640, 650. [12] 宋庆军, 李文平, 张林阳, 等. 超高强度特种钢防弹防爆性能模拟研究[J]. 汽车工艺与材料, 2022(9): 50-54. Song Qingjun, Li Wenping, Zhang Linyang, et al. Simulation study on bullet-proof and explosion-proof performance of ultra-high strength special steel[J]. Automobile Technology and Material, 2022(9): 50-54. [13] Radford D D, Deshpande V S, Fleck N A. The use of metal foam projectiles to simulate shock loading on a structure[J]. International Journal of Impact Engineering, 2005, 31(9): 1152-1171. [14] 杨康尧. 三维内凹蜂窝夹芯板抗爆性能仿真与优化[D]. 大连: 大连理工大学, 2019. Yang Kangyao. Blast Resistance simulation and multi-objective optimization design of 3D re-entrant honeycomb sandwich panels[D]. Dalian: Dalian University of Technology, 2019. [15] Vasu K R S, Vinith Y G, Uday S G, et al. A review on Johnson Cook material model[J]. Materials Today: Proceedings, 2022, 62: 3450-3456. [16] Kamikawa N, Sato K, Miyamoto G, et al. Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels[J]. Acta Materialia, 2015, 83: 383-396. [17] Zhang K, Zhang M H, Guo Z H, et al. A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Materials Science and Engineering A, 2011, 528: 8486-8491. [18] Wang Y, Zhang K, Guo Z H, et al. A new effect of retained austenite on ductility enhancement in high strength bainitic steel[J]. Materials Science and Engineering A, 2012, 552: 288-294. |