[1] 张理扬, 万照堂, 张文军. 冷轧超高强钢退火板形优化技术研究进展[J]. 金属热处理, 2022, 47(11): 230-237. Zhang Liyang, Wan Zhaotang, Zhang Wenjun. Research progress of annealed strip flatness optimization technology for cold-rolled ultra-high-strength steel[J]. Heat Treatment of Metals, 2022, 47(11): 230-237. [2] 景宏亮, 于 洋, 彭叶斌, 等. 980 MPa级冷轧DP钢组织及性能的过时效工艺实验室研究[J]. 大众科技, 2023, 25(8): 87-90. Jin Hongliang, Yu Yang, Peng Yebing, et al. Laboratory study on overaging process for structure and properties of 980 MPa grade cold-rolled DP steel[J]. Popular Science and Technology, 2023, 25(8): 87-90. [3] Taher F, Abbasi S M. Evaluation of the effects of cold rolling parameters and aging treatment for improving the strength and ductility of 13-8Mo stainless steel[J]. Materials Today: Communications, 2022, 33: 104832. [4] 赵 岩, 蔡晓辉, 刘振宇. 连续退火参数对980 MPa级冷轧双相钢组织和性能的影响[J]. 钢铁研究学报, 2015, 27(2): 55-59. Zhao Yan, Cai Xiaohui, Liu Zhenyu. Effects of continuous annealing parameters on microstructure andmechanical properties of 980 MPa cold-rolled dual-phase steel[J]. Journal of Iron and Steel Research, 2015, 27(2): 55-59. [5] Li C, Li Z, Cen Y, et al. Microstructure and mechanical properties of dual phase strip steel in the overaging process of continuous annealing[J]. Materials Science and Engineering A, 2015, 627: 281-289. [6] Li S, Wang X, Chen C. Effect of annealing temperature on carbide precipitation, microstructure and mechanical properties of Fe-Mn-C-(Cr, Mo, W, Ni, Nb, Ti, V) multi-alloying TWIP steel[J]. Materials Today: Communications, 2024, 39: 108895. [7] 刘鹏飞, 杨 波, 陈 宇, 等. 退火工艺对 980 MPa 级热镀锌双相钢组织及性能的影响[J]. 金属热处理, 2022, 47(11): 122-125. Liu Pengfei, Yang Bo, Chen Yu, et al. Effect of annealing process on microstructure and properties of 980 MPa hot dip galvanized dual-phase steel[J]. Heat Treatment of Metals, 2022, 47(11): 122-125. [8] 陈 晨, 张彩东, 张亚东, 等. 固溶时效处理对高铝低密度钢组织与性能的影响[J]. 金属热处理, 2025, 50(5): 279-283. Chen Chen, Zhang Caidong, Zhang Yadong, et al. Effect of solution and aging treatment on microstructure and properties of a high aluminum low-density steel[J]. Heat Treatment of Metals, 2025, 50(5): 279-283. [9] 任宇鹏, 张鹤松, 李声慈, 等. 连续退火热镀锌工艺对含铌DP780双相钢组织与性能的影响[J]. 金属热处理, 2025, 50(1): 68-75. Ren Yupeng, Zhang Hesong, Li Shenci, et al. Effect of continuous annealing hot-dip galvanizing process on microstructure and properties of a niobium-containing DP780 steel[J]. Heat Treatment of Metals, 2025, 50(1): 68-75. [10] 熊俊伟, 许立雄, 柳会梅, 等. 连续退火过程中的时效处理对冷轧低碳钢组织及性能的影响[J]. 金属热处理, 2025, 50(4): 231-236. Xiong Junwei, Xu Lixiong, Liu Huimei, et al. Effect of aging treatment during continuous annealing process on microstructure and properties of cold-rolled low carbon steel[J]. Heat Treatment of Metals, 2025, 50(4): 231-236. [11] Zhang M X, Kelly P M. The morphology and formation mechanism of pearlite in steels[J]. Materials Characterization, 2009, 60(6): 545-554. [12] Godec M, Skobir Balantič D A. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures[J]. Scientific Reports, 2016, 6(1): 29734. [13] 余 伟, 孙广杰, 张 飞. 冷轧TRB薄板的连续退火工艺试验研究[J]. 北京工业大学学报, 2015, 41(2): 293-298. Yu Wei, Sun Guangjie, Zhang Fei. Experimental study of continuous annealing process for cold rolled TRB sheet[J]. Journal of Beijing University of Technology, 2015, 41(2): 293-298. [14] Bataev A A, Bataev I A, Emurlaev K I, et al. Fine structure of lamellar pearlite in iron-carbon alloys[J]. Physics of Metals and Metallography, 2024, 125(7): 762-789. [15] Teixeira J, Moreno M, Allain S Y P, et al. Intercritical annealing of cold-rolled ferrite-pearlite steel: Microstructure evolutions and phase transformation kinetics[J]. Acta Materialia, 2021, 212: 116920. [16] Zhou J, Liao H, Chen H, et al. Mechanical behaviors of cold-rolled and subsequently annealed Fe35Ni35Cr20Mn10 high-entropy alloy[J]. Journal of Materials Engineering and Performance, 2021, 30: 8145-8156. |