[1] 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4. Liu Quanming, Zhang Zhaohui, Liu Shifeng, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. [2] 刘世锋, 宋 玺, 薛 彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94. Liu Shifeng, Song Xi, Xue Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94. [3] 王安东, 张禄祥, 陈彩凤, 等. 固溶时效处理对Ti-5322钛合金组织与性能的影响[J]. 金属热处理, 2020, 45(12): 24-28. Wang Andong, Zhang Luxiang, Chen Caifeng, et al. Effect of solution and aging treatment on microstructure and tensile properties of Ti-5322 alloy[J]. Heat Treatment of Metals, 2020, 45(12): 24-28. [4] 徐全斌, 刘诗园. 国外航空航天领域钛及钛合金牌号及应用[J]. 世界有色金属, 2022(16): 96-99. Xu Quanbin, Liu Shiyuan. Grades of titanium and titanium alloys developed in western countries and their applications in the aerospace industry[J]. World Nonferrous Metals, 2022(16): 96-99. [5] 陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3): 63-76. Chen Wei, Liu Yunxi, Li Zhiqiang. Research status and development trend of high-strength β titanium alloys[J]. Journal of Aeronautical Materials, 2020, 40(3): 63-76. [6] 尹卫东, 尹 慧, 向 伟, 等. TC18钛合金棒材的组织-服役性能一致性热处理[J]. 金属热处理, 2024, 49(9): 232-236. Yin Weidong, Yin Hui, Xiang Wei, et al. Heat treatment with consistency of microstructure and serviceability for TC18 titanium alloy bar[J]. Heat Treatment of Metals, 2024, 49(9): 232-236. [7] 李金山, 唐 斌, 樊江昆, 等. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454. Li Jinshan, Tang Bin, Fan Jiangkun, et al. Deformation mechanism and microstructure control of high strength metastable β titanium alloy[J]. Acta Metallurgica Sinica, 2021, 57(11): 1438-1454. [8] Duerig T W, Terlinde G T, Williams J C. Phase transformations and tensile properties of Ti-10V-2Fe-3Al[J]. Metallurgical Transactions A, 1980, 11(12): 1987-1998. [9] 陈 浩, 侯岳红, 张 曦, 等. 固溶时效处理对Ti-5.43Al-3.11Mo-1.41V合金显微组织和力学性能的影响[J]. 金属热处理, 2021, 46(7): 155-160. Chen Hao, Hou Yuehong, Zhang Xi, et al. Effect of solution and aging treatment on microstructure and mechanical properties of Ti-5.43Al-3.11Mo-1.41V titanium alloy[J]. Heat Treatment of Metals, 2021, 46(7): 155-160. [10] 张书铭, 林博超, 辛社伟, 等. 亚稳β钛合金Ti-1500热变形行为[J]. 金属热处理, 2023, 48(5): 158-165. Zhang Shuming, Lin Bochao, Xin Shewei, et al. Hot deformation behavior of metastable β-titanium alloy Ti-1500[J]. Heat Treatment of Metals, 2023, 48(5): 158-165. [11] 周晓锋, 付 文, 利成宁, 等. Ti80钛合金两相区高温变形本构模型及热加工图[J]. 金属热处理, 2022, 47(5): 25-30. Zhou Xiaofeng, Fu Wen, Li Chengning, et al. Constitutive model and hot processing map of Ti80 titanium alloy during high temperature deformation in two-phase region[J]. Heat Treatment of Metals, 2022, 47(5): 25-30. [12] 薛 强, 彭雯雯, 曾卫东. α相形态与含量对TA15钛合金力学性能的影响[J]. 钛工业进展, 2015, 32(2): 13-16. Xue Qiang, Peng Wenwen, Zeng Weidong. Effect of alpha phase morphology and content on properties of TA15 titanium alloy[J]. Titanium Industry Progress, 2015, 32(2): 13-16. [13] Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J]. Nature Communications, 2016, 7(1): 1-8. [14] 史双喜. 航空用近β钛合金TC18热变形行为及组织演变研究[D]. 长沙: 中南大学, 2024. Shi Shuangxi. Research on thermal deformation behavior and microstructure evolution of near-β titanium alloy TC18 for aerospace applications[D]. Changsha: Central South University, 2024. [15] Li C, Huang L, Zhao M, et al. Systematic analysis of the softening mechanism and texture evolution of Ti-6Cr-5Mo-5V-4Al alloy during hot compression in α+β phase region[J]. Materials Science and Engineering A, 2022, 850: 143571. [16] 盖晋阳, 程 军, 于振涛, 等. β型钛合金细化α析出相的方法及研究现状[J]. 热加工工艺, 2020, 49(14): 1-5. Ge Jinyang, Cheng Jun, Yu Zhentao, et al. Methods and research status of refinement of α precipitates in β-type titanium alloy[J]. Hot Working Technology, 2020, 49(14): 1-5. [17] 张 雪, 寇宏超, 赖运金, 等. 近β钛合金时效过程中次生α相的形核机制[C]//第十五届全国钛及钛合金学术交流会论文集. 2013: 57-61. Zhang Xue, Kou Hongchao, Lai Yunjin, et al. Nucleation mechanism of secondary α phase in near-β titanium alloy[C]//The Chinese Journal of Nonferrrous Metals. 2013: 57-61. [18] Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606): 227-230. [19] 夏晓洁, 吴国清, 黄 正, 等. 固溶时效处理对高强高韧钛合金显微组织与力学性能的影响[J]. 北京航空航天大学学报, 2015, 41(7): 1294-1299. Xia Xiaojie, Wu Guoqing, Huang Zheng, et al. Effects of solution-aging treatment on microstructure and mechanical properties of a high-strength and high-toughness titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(7): 1294-1299. [20] 周 薇, 汪 畅, 刘继雄, 等. 亚稳β型Ti-6Cr-5Mo-5V-4Al合金的时效析出序列及ω和次生α相对拉伸性能的影响[J]. 2023, 33(6): 1742-1754. Zhou Wei, Wang Chang, Liu Jixiong, et al. Ageing precipitation sequence and effect of ω and secondary α phases on tensile properties of metastable β Ti-6Cr-5Mo-5V-4Al alloy[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(6): 1742-1754. [21] 张浩宇, 王 川, 刘 丹, 等. Ti-6Mo-5V-3Al-2Fe-2Zr合金中次生α相对强度和塑性的影响[J]. 稀有金属材料与工程, 2022, 51(6): 2137-2143. Zhang Haoyu, Wang Chuan, Liu Dan, et al. Effect of secondary α phase on strength and ductility of Ti-6Mo-5V-3Al-2Fe-2Zr alloy[J]. Rare Metal Materials and Engingeering, 2022, 51(6): 2137-2143. [22] Scudino S, Liu G, Sakaliyska M, et al. Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties[J]. Acta Materialia, 2009, 57(15): 4529-4538. |