[1] 屈华鹏, 王利伟, 冯翰秋, 等. 等温变形0Cr14Mn21NiN无磁不锈钢的晶间腐蚀敏感性[J]. 金属热处理, 2020, 45(8): 1-6. Qu Huapeng, Wang Liwei, Feng Hanqiu, et al. Intergranular corrosion susceptibility of isothermally deformed 0Cr14Mn21NiN non-magnetic stainless steel[J]. Heat Treatment of Metals, 2020, 45(8): 1-6. [2] 李静媛, 李 东, 范光伟, 等. 节镍无磁不锈钢Cr18Ni6Mn3N的组织及性能[J]. 北京科技大学学报, 2012, 34(4): 397-403. Li Jingyuan, Li Dong, Fan Guangwei, et al. Microstructure and properties of nickle-saving nonmagnetic Cr18Ni6Mn3N stainless steel[J]. Journal of University of Science and Technology Beijing, 2012, 34(4): 397-403. [3] 易邦旺, 胡 燕, 郎文运, 等. 氮含量对Cr18Mn18N无磁不锈钢力学性能、磁导率和组织的影响[J]. 钢铁, 1998(3): 45-47. Yi Bangwang, Hu Yan, Lang Wenyun, et al. Effect of content on mechanical properties, magnetic of Cr18Mn18N conductivity and microstructure[J]. Iron and Steel, 1998(3): 45-47. [4] 田 君, 高 军, 刘延斌. Mn18Cr13NbN无磁不锈钢的形变强化[J]. 热处理, 2011, 26(3): 79-81. Tian Jun, Gao Jun, Liu Yanbin. Deformation strengthening of Mn18Cr13NbN non-magnetic stainless steel[J]. Heat Treatment, 2011, 26(3): 79-81. [5] 朱长春, 陈志强, 钟志兴. 耐海水无磁不锈钢的研究[J]. 上海金属, 2003(1): 4-7, 16. Zhu Changchun, Chen Zhiqiang, Zhong Zhixing. Study of a non-magnetic stainless steel for ocean[J]. Shanghai Metals, 2003(1): 4-7, 16. [6] 于 娜, 廖建军. 高强无磁不锈钢(D662、D663)的研制[J]. 大连特殊钢, 2002(1): 21-25. [7] Zhang X, Xiao Y, Cai Y C. Effect of Ni element on microstructure and properties of cold-rolled 316 L austenitic stainless steel[J]. Materials Research Express, 2024, 11(3): 036521. [8] 魏亮亮, 孙永庆, 关玉龙, 等. 不同冶炼工艺的A286沉淀硬化不锈钢中夹杂物对比探讨[J]. 冶金分析, 2022, 42(10): 1-8. Wei Liangliang, Sun Yongqing, Guan Yulong, et al. Comparison of inclusions in A286 precipitation hardening stainless steel with different smelting processes[J]. Metallurgical Analysis, 2022, 42(10): 1-8. [9] YB/T 5245—1993, 普通承力件用高温合金热轧和锻制棒材[S]. [10] 李吉东, 王 岩, 谷 宇, 等. 固溶处理对A286合金组织与硬度的影响[J]. 金属热处理, 2023, 48(2): 223-227. Li Jidong, Wang Yan, Gu Yu, et al. Comparison of inclusions in A286 precipitation hardening stainless steel with different smelting processes[J]. Heat Treatment of Metals, 2023, 48(2): 223-227. [11] 北京钢铁学院高温合金教研室. GH123合金[M]. 北京: 国防工业出版社, 1980. [12] Qurashi M S, Zhao Y, Dong C, et al. Effect of carbon and titanium variations in Fe-based heat-resistant superalloy A286 on TiC and η phase formation[J]. Steel Research International, 2022, 93(6): 2100390. [13] Wei L, Zhao H, Sun Y, et al. Microstructure evolution and stress rupture properties of A286 superalloy in the 600 to 750 ℃ temperature range[J]. Materials Research Express, 2021, 8(2): 026521. [14] Shahedi R, Kheirandish S, Shirazi F, et al. The effect of solid solution treatment parameters on the microstructure and mechanical properties of A286 superalloy[J]. Metallurgical Research and Technology, 2021, 118(5): 517. [15] 代礼斌, 杨章程, 邓 雄, 等. 固溶温度对A286合金低温力学性能的影响[J]. 金属热处理, 2023, 48(3): 96-99. Dai Libin, Yang Zhangcheng, Deng Xiong, et al. Effect of solution temperature on cryogenic mechanical properties of A286 alloy[J]. Heat Treatment of Metals, 2023, 48(3): 96-99. [16] 梁 琦, 孙永庆, 田 帅, 等. 时效处理对冷变形A286不锈钢组织与性能的影响[J]. 钢铁研究学报, 2023, 35(10): 1300-1308. Liang Qi, Sun Yongqing, Tian Shuai, et al. Influence of aging treatment on microstructure and properties of cold deformation A286 stainless steel[J]. Journal of Iron and Steel Research, 2023, 35(10): 1300-1308. [17] 魏 利. 冶炼工艺对A286奥氏体沉淀硬化不锈钢性能的影响[D]. 赣州: 江西理工大学, 2021. [18] 高 云, 柳思成, 余传魁, 等. 预热变形对A286高温合金时效后组织和硬度的影响[J]. 金属热处理, 2019, 44(3): 175-179. Gao Yun, Liu Sicheng, Yu Chuankui, et al. Effect of prior hot deformation on microstructure and hardness of A286 superalloy after aging[J]. Heat Treatment of Metals, 2019, 44(3): 175-179. [19] 张崔禹. A286高温合金冷镦成形及其热处理组织研究[D]. 天津: 天津理工大学, 2023. [20] Ali U, Qurashi M S, Lartey P O, et al. Influence of η-(Ni3Ti) and TiC phases on corrosion resistance and mechanical properties of A286 austenitic superalloy after heat treatment[J]. International Journal of Electrochemical Science, 2023, 18(7): 100208. |