[1] 王亚东. 汽车用高强度钢热成型技术[J]. 时代汽车, 2018(5): 7-8. Wang Yadong. Hot forming technology of high-strength steel for automobiles[J]. Auto Time, 2018(5): 7-8. [2] 金学军, 龚 煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020, 56(4): 411-428. Jin Xuejun, Gong Yu, Han Xianhong, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 411-428. [3] 李 伟. 汽车车身中高强度钢热成形技术的应用[J]. 时代汽车, 2020(19): 136-137. Li Wei. Application of hot forming technology of high strength steel in automobile body[J]. Auto Time, 2020(19): 136-137. [4] 魏成实, 贾 涓, 王 贞, 等. 含钒中锰热成形钢的高温力学性能[J]. 金属热处理, 2023, 48(8): 35-41. Wei Chengshi, Jia Juan, Wang Zhen, et al. High temperature mechanical properties of medium-Mn hot stamping steel containing vanadium[J]. Heat Treatment of Metals, 2023, 48(8): 35-41. [5] 路洪洲, 赵 岩, 冯 毅, 等. 微合金化热成形钢开发应用进展及展望[J]. 机械工程材料, 2020, 44(12): 1-10. Lu Hongzhou, Zhao Yan, Feng Yi, et al. Progress and prospect for development and application of microalloying press-hardening steel[J]. Materials for Mechanical Engineering, 2020, 44(12): 1-10. [6] Liang Jiangtao, Lu Hongzhou, Zhang Leilei, et al. A 2000 MPa grade Nb bearing hot stamping steel with ultra-high yield strength[J]. Materials Science and Engineering A, 2021(12): 1-10. [7] Zhang Shiqi, Fan Endian, Wan Jifang, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel[J]. Corrosion Science, 2018, 139(15): 83-96. [8] Seo Hyun Joo, Jo Jang Woong, Kim Jae Nam, et al. Effect of undissolved Nb carbides on mechanical properties of hydrogen precharged tempered martensitic steel[J]. Scientific Reports, 2020(10): 11704. [9] 易红亮, 常智渊, 才贺龙, 等. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020(4): 429-443. Yi Hongliang, Chang Zhiyuan, Cai Helong, et al. Strength, ductility and fracture strain of press-hardening steels[J]. Acta Metallurgica Sinica, 2020(4): 429-443. [10] 田秀刚, 王 朝, 孙 旭, 等. 加热温度对34MnB5热成形钢组织性能的影响[J]. 金属热处理, 2023, 48(3): 135-138. Tian Xiugang, Wang Chao, Sun Xu, et al. Effect of heating temperature on microstructure and properties of 34MnB5 hot forming steel[J]. Heat Treatment of Metals, 2023, 48(3): 135-138. [11] 朱赫男, 陈 刚, 杨佳伟, 等. Ti微合金化对22MnB5热成形钢组织和性能的影响[J]. 金属热处理, 2022, 47(1): 125-129. Zhu Henan, Chen Gang, Yang Jiawei, et al. Effect of Ti micro-alloying on microstructure and properties of 22MnB5 hot press forming steel[J]. Heat Treatment of Metals, 2022, 47(1): 125-129. [12] 谷海容, 卢茜倩, 刘永刚, 等. 微合金元素 Nb, V 对热成形钢组织及氢脆敏感性影响[J]. 安徽工业大学学报 (自然科学版), 2018(4): 295-300. Gu Hairong, Lu Qianqian, Liu Yonggang, et al. Influence of microalloying elements Nb and V on microstructure and hydrogen embrittlement sensitivity of hot stamping steel[J]. Journal of Anhui University of Technology (Natural Science), 2018(4): 295-300. [13] 刘 纲, 干 勇, 刘 崇, 等. 基于22MnB5 钢的铌钒微合金化热成形钢的研发[J]. 金属热处理, 2021, 46(1): 109-113.Liu Gang, Gan Yong, Liu Chong, et al. Development of Nb-V microalloyed hot forming steel based on 22MnB5[J]. Heat Treatment of Metals, 2021, 46(1): 109-113. [14] 刘安民, 冯 毅, 赵 岩, 等. 铌钒微合金化对22MnB5 热成形钢显微组织与性能的影响[J]. 机械工程材料, 2019(5): 34-37. Liu Anmin, Feng Yi, Zhao Yan, et al. Effect of niobium and vanadium micro-alloying on microstructure and property of 22MnB5 hot press forming steel[J]. Materials for Mechanical Engineering, 2019(5): 34-37. [15] Hiromoto Kitahara, Rintaro Ueji, Nobuhiro Tsuji, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54: 1279-1288. [16] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51: 1789-1799. |