[1] Ming Q, Sugimoto T, Watanabe Y, et al. Uniform quenching technology by using controlled high pressure gas after low pressure carburizing[R].SAE Technical Paper, 2008. [2] Loeser K, Heuer V, Faron D R. Distortion control by innovative heat treating technologies in the automotive industry[J]. HTM Journal of Heat Treatment and Materials, 2006, 61(6): 326-329. [3] Goldsteinas A. New vacuum processes achieve mechanical property improvement in gearbox components[J]. Gear Technology, 2007, 24(6): 34-39. [4] 高志成. 新型冷轧管机非圆齿轮传动系统研发[D]. 秦皇岛: 燕山大学, 2018. [5] 方河才. 冷轧管机发展中有关技术问题的讨论[J]. 钢管, 2005, 34(5): 1-6. Fang Hecai. Discussion on technical issues concerning development of cold-rolling pipe mill[J]. Steel Pipe, 2005, 34(5): 1-6. [6] Feng Wei, Feng Zengjie, Mao Ling. Failure analysis of a secondary driving helical gear in transmission of electric vehicle[J]. Engineering Failure Analysis, 2020, 117: 104934. [7] Sabri A, Rasid Z, Hassan M. Failure of steel helical gear used for automotive transmission[J]. Journal of Advanced Research in Materials Science, 2017, 37(1): 1-9. [8] Zhang Yuru, Su Chun, Liu Xintian. Notch-based probabilistic fatigue analysis of automobile transmission gear considering size effect[J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103882. [9] Kong Weidi, Zhang Dekun, Tao Qing, et al. Wear properties of the deep gradient wear-resistant layer applied to 20CrMnTi gear steel[J]. Wear, 2019, 424: 216-222. [10] 王申存. 低碳低合金渗碳钢的组织、性能与晶体学特征的研究[D]. 长沙: 中南大学, 2010. [11] 张英才. 齿轮渗碳硬化层控制及其性能[J]. 汽车工艺, 1991(5): 17, 8. [12] 杜显彬, 周 平, 翟正龙, 等. 汽车用高性能齿轮钢的研究与开发[J]. 山东冶金, 2004, 26(4): 66-68. Du Xianbin, Zhou Ping, Zhai Zhenglong, et al. Research and development of high property gear steel applied for automobile[J]. Shandong Metallurgy, 2004, 26(4): 66-68. [13] 张继魁, 张爱军, 辛 莹, 等. 汽车渗碳齿轮钢的性能和发展[J]. 汽车工艺与材料, 2008(6): 48-52. [14] 彭 俊, 周述积, 楼芬丽. 汽车渗碳齿轮用钢及热处理工艺的现状和发展趋势[J]. 热处理技术与装备, 2007, 28(1): 3-6, 24. Peng Jun, Zhou Shuji, Lou Fenli. State of process and development trend of automobile carburized gear-used steel and heat treatment technology[J]. Heat Treatment Technology and Equipment, 2007, 28(1): 3-6, 24. [15] Kim N K, Bae K Y. Analysis of deformation in the carburizing-quenching heat treatment of helical gears made of SCM415H steel[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(1): 73-79. [16] Sun P, Pang D, Qi X, et al. The heat treatment deformation law and the improvement of accuracy of the transmission gear[C]//Society of Automotive Engineers (SAE)-China Congress. Singapore: Springer Singapore, 2018: 647-661. [17] Puls M, Kirkaldy J. The pearlite reaction[J]. Metallurgical and Materials Transactions B, 1972, 3: 2777-2796. [18] Umemoto M, Horiuchi K, Tamura I. Pearlite transformation during continuous cooling and its relation to isothermal transformation[J]. Transactions of the Iron and Steel Institute of Japan, 1983, 23(8): 690-695. [19] Chen Rongchuang, Zheng Zhizhen, Li Ning, et al. In-situ investigation of phase transformation behaviors of 300M steel in continuous cooling process[J]. Materials Characterization, 2018, 144: 400-410. [20] Dobrzański Leszek, Trzaska Jacek. Application of neural networks for the prediction of continuous cooling transformation diagrams[J]. Computational Materials Science, 2004, 30(3/4): 251-259. |