金属热处理 ›› 2025, Vol. 50 ›› Issue (4): 95-100.DOI: 10.13251/j.issn.0254-6051.2025.04.014

• 材料研究 • 上一篇    下一篇

新型低合金铁素体低温钢的连续冷却转变行为

陈立1, 高建文1, 张可2, 魏宏宇2, 张明亚3   

  1. 1.湖南湘潭钢铁集团有限公司 技术中心, 湖南 湘潭 411101;
    2.安徽工业大学 冶金工程学院, 安徽 马鞍山 243032;
    3.安徽工业大学 材料科学与工程学院, 安徽 马鞍山 243032
  • 收稿日期:2024-11-04 修回日期:2025-02-12 发布日期:2025-06-13
  • 通讯作者: 张 可,副教授,博士,E-mail:huzhude@yeah.net
  • 作者简介:陈 立(1983—),男,工程师,主要研究方向为连铸工艺和新产品开发,E-mail:chenli.568@163.com。
  • 基金资助:
    安徽省高等学校科学研究项目(2023AH051090);安徽工业大学重大产学研横向课题(RH2300001511)

Continuous cooling transformation behavior of a novel low-alloy ferritic low-temperature steel

Chen Li1, Gao Jianwen1, Zhang Ke2, Wei Hongyu2, Zhang Mingya3   

  1. 1. Technology Center, Hunan Xiangtan Iron and Steel Group Co., Ltd., Xiangtan Hunan 411101, China;
    2. School of Metallurgical Engineering, Anhui University of Technology, Maanshan Anhui 243032, China;
    3. School of Materials Science and Engineering, Anhui University of Technology, Maanshan Anhui 243032, China
  • Received:2024-11-04 Revised:2025-02-12 Published:2025-06-13

摘要: 采用Gleeble-3800热模拟机、OM和Vickers硬度计等手段,通过热膨胀法和金相-硬度法,研究了冷却速度对低合金铁素体低温钢组织、硬度及相变行为的影响,并绘制了低温钢的连续冷却转变曲线。结果表明,当冷速为0.1~1 ℃/s时,低温钢的组织为铁素体、珠光体以及贝氏体,且贝氏体含量随冷速增加不断增大,低温钢的硬度也由166 HV0.5增加至217 HV0.5;当冷速为3~15 ℃/s时,过冷度的增大抑制了先共析铁素体转变,铁素体含量减少,低温钢的组织为铁素体和贝氏体,且组织细小均匀,低温钢的硬度不断增大,升高至224~243 HV0.5;当冷速为20~40 ℃/s时,较大的过冷度使得过冷奥氏体发生马氏体转变,此时低温钢的组织为铁素体和贝氏体以及少量的马氏体,显微硬度继续增大,当冷速为40 ℃/s时,硬度达到最大值290 HV0.5。综合考虑塑韧性和硬度,新型低合金铁素体低温钢的最佳控冷区间为3~15 ℃/s。

关键词: 低合金铁素体低温钢, 冷却速度, 组织, 硬度, CCT曲线

Abstract: Influence of cooling rate on the microstructure, hardness, and phase transformation behavior of low-alloy ferritic low-temperature steel was investigated by means of Gleeble-3800 thermal simulator, OM and Vickers hardness tester through thermal expansion method and metallographic-hardness method, and the continuous cooling transformation curve of the low-temperature steel was drawn. The results show that when the cooling rate is 0.1-1 ℃/s, the microstructure of the low-temperature steel is ferrite, pearlite and bainite, and the content of bainite increases continuously with the increase of cooling rate, and the hardness of the low-temperature steel increases from 166 HV0.5 to 217 HV0.5. When the cooling rate is 3-15 ℃/s, the increase of undercooling inhibits the transformation of proeutectoid ferrite, the content of ferrite decreases, and the microstructure of the low-temperature steel is ferrite and bainite, and the microstructure is fine and uniform. The hardness of the low-temperature steel increases continuously and reaches 224-243 HV0.5. When the cooling rate is 20-40 ℃/s, the larger undercooling causes the undercooled austenite to transform into martensite. At this time, the microstructure of the low-temperature steel is ferrite, bainite and a small amount of martensite, and the microhardness continues to increase, reaching the maximum value of 290 HV0.5 at cooling rate of 40 ℃/s. Considering the plasticity, toughness and hardness comprehensively, the optimal controlled cooling range of the novel low-alloy ferritic low-temperature steel is 3-15 ℃/s.

Key words: low-alloy ferritic low-temperature steel, cooling rate, microstructure, hardness, CCT curve

中图分类号: