[1] Yang J, Zhao Z, Mu J, et al. Effect of pre-plastic-deformation on mechanical properties of TiZr-based amorphous alloy composites[J]. Materials Science and Engineering A, 2018, 716: 23-27. [2] Wu L J, Zhu Z W, Liu D M, et al. Deformation behavior of a TiZr-based metallic glass composite containing dendrites in the supercooled liquid region[J]. Journal of Materials Science and Technology, 2020, 37: 64-70. [3] Zong H T, Ma M Z, Liu L, et al. Wf/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites prepared by a new melt infiltrating method[J]. Journal of Alloys and Compounds, 2010, 504: 106-109. [4] Cheng S, Wang C, Ma M, et al. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses[J]. Journal of Alloys and Compounds, 2016, 676: 299-304. [5] 牟 娟, 王东梅, 王沿东. 冷却速率和高径比对钛基非晶复合材料力学性能的影响[J]. 金属学报, 2015, 51(12): 1435-1440. Mu Juan, Wang Dongmei, Wang Yandong. Effects of cooling rate and height-diameter ratio on mechanical properties of titanium-based amorphous composites[J]. Acta Metallurgica Sinica, 2015, 51(12): 1435-1440. [6] 王发东, 张曙光, 胡 捷, 等. Zr基大块非晶合金在过冷液相区的静液挤压塑性变形研究[J]. 塑性工程学报, 2006, 13(5): 6-10. Wang Fadong, Zhang Shuguang, Hu Jie, et al. Characterization of Zr base bulk amorphous alloy deformed in supercooled liquid region by hydrostatic extrusion[J]. Journal of Plasticity Engineering, 2006, 13(5): 6-10. [7] Zhang H F, Li H, Wang A M, et al. Synthesis and characteristics of 80vol.% tungsten(W) fibre/Zr based metallic glass composite[J]. Intermetallics, 2009, 17(12): 1070-1077. [8] Schroers J. Processing of bulk metallic glass[J]. Advanced Materials, 2010, 22(14): 1566-1597. [9] Ma M Z, Liu R P, Xiao Y, et al. Wear resistance of Zr-based bulk metallic glass applied in bearing rollers[J]. Materials Science and Engineering A, 2004, 386(1/2): 326-330. [10] Ma D Q, Zhang X Y, Ma M Z, et al. Effect of compositional tailoring on the glass-forming ability and mechanical properties of TiZr-based bulk metallic glass matrix composites[J]. Materials Science and Engineering A, 2014, 612: 310-315. [11] Turnbull D, Cohen M H. Free-volume model of the amorphous phase: Glass transition[J]. Journal of Chemical Physics, 1961, 34(1): 120-125. [12] Ming K, Zhu Z, Zhu W, et al. Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys[J]. Science Advances, 2022, 8(10): eabm2884. [13] Liu L, Chen Q, Chan K C, et al. The effect of high temperature plastic deformation on the thermal stability and microstructure of Zr55Cu30Ni5Al10 bulk metallic glass[J]. Materials Science and Engineering A, 2007, 449(12): 949-953. [14] Lv J W, Wang F L, Zhang S, et al. Deformation behaviours of TiZrCuNiBe bulk metallic glass in supercooled liquid region[J]. Journal of Alloys and Compounds, 2020, 844: 156101. [15] Jun H J, Lee K S, Chang Y W. Deformation behavior and formability of a Ti-Zr-Ni-Be bulk metallic glass within supercooled liquid region[J]. Intermetallics, 2010, 18(8): 1537-1543. [16] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. [17] Liu S, Hou C, Wang E, et al. Plastic rheological behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 amorphous alloys in the supercooled liquid region[J]. Acta Metallurgica Sinica, 2022, 58(6): 807-815. [18] Seshacharyulu K, Mahalle G, Kotkunde N, et al. High temperatures deformation and formability behavior of DP590 steel: Mechanical characterization and modeling[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(10): 472. [19] 武雪婷, 吴志伟, 张 军. 新型低碳高合金轴承钢的热变形行为与热加工图[J]. 金属热处理, 2023, 48(9): 54-59. Wu Xueting, Wu Zhiwei, Zhang Jun. Hot deformation behavior and processing maps of a new type low-carbon high-alloy bearing steel[J]. Heat Treatment of Metals, 2023, 48(9): 54-59. |