[1] Hu B, Luo H, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review[J]. Journal of Materials Science and Technology, 2017, 33(12): 1457-1464. [2] 娄航宇, 石增敏, 梁静宇, 等. 先进高强度QP/QPT钢的研究现状及展望[J]. 热加工工艺, 2020, 49(10): 11-15. Lou Hangyu, Shi Zengmin, Liang Jingyu, et al. Research status and progress of advanced high strength QP/QPT steels[J]. Hot Working Technology, 2020, 49(10): 11-15. [3] 王存宇, 杨 洁, 常 颖, 等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁, 2019, 54(2): 1-6. Wang Cunyu, Yang Jie, Chang Ying, et al. Development trend and challenge of advanced high strength automobile steels[J]. Iron and Steel, 2019, 54(2): 1-6. [4] 魏元生. 第三代高强度汽车钢的性能与应用[J]. 金属热处理, 2015, 40(12): 34-39. Wei Yuansheng. Performance and application of the 3rd generation high strength automobile steel[J]. Heat Treatment of Metals, 2015, 40(12): 34-39. [5] 岑琼瑛, 张本道, 严子杰, 等. Fe-0.1C-5Mn中锰钢热变形行为研究[J]. 上海金属, 2023, 45(5): 34-40. Cen Qiongying, Zhang Bendao, Yan Zijie, et al. Study on hot deformation behavior of Fe-0.1C-5Mn medium manganese steel[J]. Shanghai Metals, 2023, 45(5): 34-40. [6] Allam T, Ali M, Guo X, et al. Simultaneous enhancement of mechanical properties and resistance to hydrogen-assisted degradation by multiple precipitation and nano-twinning in medium manganese steel[J]. Materials Science and Engineering A, 2023, 877: 145203. [7] Cai Z, Wang S, Zhou Y, et al. The synergistic effect of grain refinement and precipitation strengthening on mechanical properties and dry sliding wear behavior of medium manganese steels[J]. Tribology International, 2023, 179: 108158. [8] Mohapatra S, Mandal A, Poojari G, et al. Influence of intercritical annealing temperature on microstructure, microtexture, and tensile behavior of TRIP-assisted medium manganese steel[J]. Materialia, 2023, 28: 101781. [9] 王存宇, 周明博, 李晓东, 等. 温成形中锰钢的组织性能评价[J]. 钢铁, 2019, 54(10): 58-65. Wang Cunyu, Zhou Mingbo, Li Xiaodong, et al. Evaluation of microstructure and properties of warm stamped medium manganese steel[J]. Iron and Steel, 2019, 54(10): 58-65. [10] 赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076. [11] 史文超. TRIP780高强钢动态变形行为的宏微观研究[D]. 上海: 上海交通大学, 2009. [12] 韦习成, 符仁钰, 李 麟, 等. 不同应变率下TRIP钢的拉伸性能[J]. 上海金属, 2002(4): 32-36. Wei Xicheng, Fu Renyu, Li Lin, et al. Tensile property of TRIP steel under different strain rates[J]. Shanghai Metals, 2002(4): 32-36. [13] 熊自柳, 吝章国, 孙 力, 等. 汽车用高强度钢板的动态变形行为[J]. 机械工程材料, 2018, 42(8): 18-23. Xiong Ziliu, Lin Zhangguo, Sun Li, et al. Dynamic deformation behaviour of high strength steel sheet for automotive[J]. Materials for Mechanical Engineering, 2018, 42(8): 18-23. [14] Chandan A K, Mishra G, Kishore K, et al. Evading the strength-ductility compromise in medium manganese steel by a novel low temperature warm rolling treatment[J]. Materials Characterization, 2023, 206: 113445. [15] Tang Z Y, Huang J N, Ding H, et al. On the dynamic behavior and relationship to mechanical properties of cold-rolled Fe-0.2C-15Mn-3Al steel at intermediate strain rate[J]. Materials Science and Engineering A, 2019, 742: 423-431. [16] Lee S, Estrin Y, De Cooman B C. Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP steel[J]. Metallurgical and Materials Transactions A, 2014, 45(2): 717-730. [17] Xu M, Yang Y G, Chen J Y, et al. Effects of strain states on stability of retained austenite in medium Mn steels[J]. Journal of Iron and Steel Research, International, 2017, 24(11): 1125-1130. [18] Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels[J]. Metallurgical and Materials Transactions A, 2009, 40(13): 3076-3090. [19] 宋仁伯, 霍巍丰, 周乃鹏, 等. Fe-Mn-Al-C系中锰钢的研究现状与发展前景[J]. 工程科学学报, 2020, 42(7): 814-828. Song Renbo, Huo Weifeng, Zhou Naipeng, et al. Research progress and prospect of Fe-Mn-Al-C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. [20] Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering A, 2008, 483-484: 184-187. [21] Li K, Yu B, Misra R D K, et al. Strain rate dependence on the evolution of microstructure and deformation mechanism during nanoscale deformation in low carbon-high Mn TWIP steel[J]. Materials Science and Engineering A, 2019, 742: 116-123. [22] Wang C, Cai W, Sun C, et al. Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel[J]. Materials Science and Engineering A, 2022, 835: 142673. [23] Park J, Kang M, Sohn S S, et al. Quasi-static and dynamic deformation mechanisms interpreted by microstructural evolution in twinning induced plasticity (TWIP) steel[J]. Materials Science and Engineering A, 2017, 684: 54-63. [24] Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58(15): 5129-5141. [25] Yen H W, Ooi S W, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels[J]. Acta Materialia, 2015, 82: 100-114. [26] Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering A, 2004, 387-389: 158-162. [27] 彭 仙. C对Fe-Mn-Cu-C系TWIP钢层错能及孪生诱发塑性行为的影响[D]. 福州: 福州大学, 2013. [28] Bolling G F, Richman R H. Continual mechanical twinning: Part I: Formal description[J]. Acta Metallurgica, 1965, 13(7): 709-722. |