[1] 田 旭, 李照令, 耿 涌, 等. 碳中和目标下中国钢铁行业碳减排的资源环境影响[J]. 资源科学, 2024, 46(4): 700-716. Tian Xu, Li Zhaoling, Geng Yong, et al. Resource and environment impacts of carbon emission reduction in China's iron and steel sector under the carbon neutrality goal[J]. Resources Science, 2024, 46(4): 700-716. [2] 杨 悦. “双碳”路上, 技术创新蹄疾步稳[N]. 中国冶金报, 2023-10-18(03). [3] Zhu C, Ma J. Dynamic strategies of horizontal low-carbon supply chains under double carbon policies: A bounded rationality perspective[J]. Computers and Industrial Engineering, 2023, 181: 109309. [4] 李彦泽, 李运刚, 任喜强, 等. 汽车用高强钢氢脆损伤研究的现状[J]. 上海金属, 2024, 46(1): 1-8. Li Yanze, Li Yungang, Ren Xiqiang, et al. Present situation of research on hydrogen embrittlement damage of high strength steel for automobile[J]. Shanghai Metals, 2024, 46(1): 1-8. [5] 柯书忠. DP600钢的氢脆敏感性和氢渗透行为研究[D]. 武汉: 武汉科技大学, 2018. [6] Shibata A, Yonemura T, Momotani Y, et al. Effects of local stress, strain, and hydrogen content on hydrogen-related fracture behavior in low-carbon martensitic steel[J]. Acta Materialia, 2021, 210: 116828. [7] Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616. [8] 氢致损伤[J]. 金属热处理, 2023, 48(4): 234, 244. [9] 李星国. 金属的氢脆及其产生机制[J]. 上海金属, 2023, 45(5): 1-16. Li Xingguo. Hydrogen embrittlement of metals and its mechanism[J]. Shanghai Metals, 2023, 45(5): 1-16. [10] 张子雨, 李佶纳, 刘 赓, 等. 增材制造抗氢钢组织性能调控及其氢脆敏感性[J]. 钢铁, 2024, 59(6): 94-103. Zhang Ziyu, Li Jina, Liu Geng, et al. Microstructure and properties control and hydrogen embrittlement sensitivity of additive manufactured hydrogen resistant steel[J]. Iron and Steel, 2024, 59(6): 94-103. [11] Cai M, Zhu W, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy[J]. Materials Science and Engineering A, 2016, 653: 35-42. [12] Pu S, Turk A, Lenka S, et al. Study of hydrogen release resulting from the transformation of austenite into martensite[J]. Materials Science and Engineering A, 2019, 754: 628-635. [13] Pradhan A, Vishwakarma M, Dwivedi K S. A review: The impact of hydrogen embrittlement on the fatigue strength of high strength steel[J]. Materialstoday: Proceedings, 2020, 26: 3015-3019. [14] Sun B, Wang D, Lu X, et al. Current challenges and opportunities toward understanding hydrogen embrittlement mechanisms in advanced high-strength steels: A review[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 1-14. [15] Lee H W, Park T M, Kim H J, et al. Correlation between pre-strain and hydrogen embrittlement behavior in medium-Mn steel[J]. Journal of Materials Science and Technology, 2025, 206: 62-73. [16] Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system[J]. Journal of Materials Engineering and Performance, 2000, 9(6): 597-602. [17] Gong P, Turk A, Nutter J, et al. Hydrogen embrittlement mechanisms in advanced high strength steel[J]. Acta Materialia, 2022, 223: 117488. [18] Song S W, Kim J N, Seo H J, et al. Effects of carbon content on the tensile and fatigue properties in hydrogen-charged Fe-17Mn-xC steels: The opposing trends[J]. Materials Science and Engineering A, 2018, 724: 469-476. [19] 张永健, 周 超, 惠卫军, 等. 碳含量对Mn-B钢氢致延迟断裂行为的影响[J]. 钢铁研究学报, 2014, 26(5): 49-55. Zhang Yongjian, Zhou Chao, Hui Weijun, et al. Effect of Ccontent on hydrogen induced fracture behavior of Mn-B type steels[J]. Journal of Iron and Steel Research, 2014, 26(5): 49-55. [20] Kwok T W J, Dye D. A review of the processing, microstructure and property relationships in medium Mn steels[J]. International Materials Reviews, 2023, 68(8): 1098-1134. [21] Zou Y, Xu Y B, Wang G, et al. Improved strength-ductility-toughness balance of a precipitation-strengthened low-carbon medium-Mn steel by adopting intercritical annealing-tempering process[J]. Materials Science and Engineering A, 2021, 802: 140636. [22] Zhang J, Sun B, Yang Z, et al. Enhancing the hydrogen embrittlement resistance of medium Mn steels by designing metastable austenite with a compositional core-shell structure[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. [23] Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9wt.% medium Mn steel[J]. Acta Materialia, 2015, 86: 182-192. [24] Zhang Y, Ye Q, Yan Y. Processing, microstructure, mechanical properties, and hydrogen embrittlement of medium-Mn steels: A review[J]. Journal of Materials Science and Technology, 2024, 201: 44-57. [25] 李晓亮, 程晓英, 王兆丰, 等. 回火温度对Nb、V合金化低合金高强度钢氢脆敏感性的影响[J]. 金属热处理, 2024, 49(3): 7-14. Li Xiaoliang, Cheng Xiaoying, Wang Zhaofeng, et al. Effect of tempering temperature on hydrogen embrittlement sensitivity of a low-alloy high-strength steel with Nb and V[J]. Heat Treatment of Metals, 2024, 49(3): 7-14. [26] 蔡贞祥, 程晓英, 彭 浩, 等. 回火温度对含Nb低合金高强度钢氢行为的影响[J]. 金属热处理, 2023, 48(4): 45-52. Cai Zhenxiang, Cheng Xiaoying, Peng Hao, et al. Effect of tempering temperature on hydrogen behavior of Nb-containing HSLA steel[J]. Heat Treatment of Metals, 2023, 48(4): 45-52. [27] Ousiabou B, Ooi S W, Javaheri V, et al. On accelerated design, and characterization of a hydrogen-embrittlement tolerant Mn-Steel[J]. Engineering Failure Analysis, 2024, 162: 108438. [28] 徐娟萍. 成分和组织调控对中锰钢力学行为和抗氢性能的影响[D]. 北京: 北京科技大学, 2022. [29] 王 瑞, 张丽凤, 王社则, 等. 低密度汽车钢的显微组织与氢脆性能[J]. 上海金属, 2020, 42(4): 6-10, 17. Wang Rui, Zhang Lifeng, Wang Sheze, et al. Microstructure and hydrogen embrittlement properties of low density automotive steel[J]. Shanghai Metals, 2020, 42(4): 6-10, 17. [30] 陈 翠, 林文洋, 李维娟, 等. EH36钢的氢陷阱及氢脆敏感性[J]. 金属热处理, 2024, 49(3): 147-152. Chen Cui, Lin Wenyang, Li Weijuan, et al. Hydrogen trap and hydrogen embrittlement sensitivity of EH36 steel[J]. Heat Treatment of Metals, 2024, 49(3): 147-152. [31] Counts W A, Wolverton C, Gibala R. First-principles energetics of hydrogen traps in α-Fe: Point defects[J]. Acta Materialia, 2010, 58(14): 4730-4741. [32] 李金许, 王 伟, 周 耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458. Li Jinxu, Wang Wei, Zhou Yao, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 444-458. [33] Wang Z, Xu J, Li J. Influence of microstructure on hydrogen embrittlement in hot-rolled medium Mn steels[J]. Materials Science and Engineering A, 2020, 780: 139147. [34] Lynch S. Hydrogen embrittlement phenomena and mechanisms[J]. Corrosion Reviews, 2012, 30(3/4): 105-123. [35] Wei F G, Hara T, Tsuzaki K. Nano-preciptates design with hydrogen trapping character in high strength steel[C]//Advanced Steels: The Recent Scenario in Steel Science and Technology. Springer Berlin Heidelberg, 2011: 87-92. [36] 白赛义汉. 预应变对含V中锰钢组织性能与氢脆敏感性的影响[D]. 北京: 北京交通大学, 2023. [37] Ma M T, Li K J, Si Y, et al. Hydrogen embrittlement of advanced high-strength steel for automobile application: A review[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. [38] Lin Y C, McCarroll I E, Lin Y T, et al. Hydrogen trapping and desorption of dual precipitates in tempered low-carbon martensitic steel[J]. Acta Materialia, 2020, 196: 516-527. [39] Chen Y S, Lu H, Liang J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates[J]. Science, 2020, 367(6474): 171-175. [40] Lee J A, Woods S. Hydrogen Embrittlement: JSC-CN-36009, NASA/TM-2016-218602[R]. Johnson Space Center, 2016. [41] Atrens A, Liu Q, Tapia-Bastidas C, et al. Influence of hydrogen on steel components for clean energy[J]. Corrosion and Materials Degradation, 2018, 1(1): 3-26. [42] Xu J P, Wang Z, Fu H, et al. Effects of rolling and heat treatment on hydrogen embrittlement in medium-Mn steel[J]. Materials Letters, 2021, 305: 130784. [43] Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel[J]. Acta Materialia, 2016, 113: 1-10. [44] Zhang Y, Hui W, Wang J, et al. Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling[J]. Scripta Materialia, 2019, 165: 15-19. [45] 薄鑫涛. 氢脆发生的主要原因和防止措施[J]. 热处理, 2022, 37(1): 7. [46] Shao C, Hui W, Zhang Y, et al. Effect of intercritical annealing time on hydrogen embrittlement of warm-rolled medium Mn steel[J]. Materials Science and Engineering A, 2018, 726: 320-331. [47] Xu J, Li J, Wang Z, et al. Dependence of hydrogen embrittlement on annealing time in medium-Mn steels[J]. Anti-Corrosion Methods and Materials, 2021, 68(5): 464-472. [48] Sun B, Krieger W, Rohwerder M, et al. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels[J]. Acta Materialia, 2020, 183: 313-328. [49] 王海波, 徐震霖, 胡学文, 等. 热轧超高强度复相钢的氢脆敏感性[J]. 金属热处理, 2021, 46(8): 51-56. Wang Haibo, Xu Zhenlin, Hu Xuewen, et al. Hydrogen embrittlement susceptibility of a hot-rolled ultra-high strength complex phase steel[J]. Heat Treatment of Metals, 2021, 46(8): 51-56. [50] Zhang Y, Hui W, Zhao X, et al. Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel(0.1C-5Mn)[J]. Engineering Failure Analysis, 2019, 97: 605-616. [51] Du Y, Gao X, Lan L, et al. Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments[J]. International Journal of Hydrogen Energy, 2019, 44(60): 32292-32306. [52] Turk A, Pu S D, Bombač D, et al. Quantification of hydrogen trapping in multiphase steels: Part II-Effect of austenite morphology[J]. Acta Materialia, 2020, 197: 253-268. [53] Wang Z, Huang M X. Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioningsteels by tailoring martensite matrix and retained austenite[J]. International Journal of Plasticity, 2020, 134: 102851. [54] Sun B, Lu W, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels[J]. Nature Materials, 2021, 20(12): 1629-1634. [55] 王娇娇. 预应变对含Al中锰钢组织性能与氢脆敏感性的影响[D]. 北京: 北京交通大学, 2020. [56] 冯佩功, 程晓英, 张海霞. 原奥氏体晶粒尺寸对低合金高强度系泊链钢氢脆敏感性的影响[J]. 金属热处理, 2014, 39(11): 20-26. Feng Peigong, Cheng Xiaoying, Zhang Haixia. Effect of original austenite grain size on hydrogen embrittlement sensitivity of high strength low alloy mooring chain steel[J]. Heat Treatment of Metals, 2014, 39(11): 20-26. [57] Jeong I, Ryu K M, Lee D G, et al. Austenite morphology and resistance to hydrogen embrittlement in medium Mn transformation-induced plasticity steel[J]. Scripta Materialia, 2019, 169: 52-56. [58] Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels[J]. Materials Science and Engineering A, 2016, 658: 400-408. |