[1] Tiryakioğlu M, Robinson J S, Salazar-Guapuriche M A, et al. Hardness-strength relationships in the aluminum alloy 7010[J]. Materials Science and Engineering A, 2015, 631: 196-200. [2] Okocha S I, Yu F, Jar P Y B, et al. Indentation testing method for determining mechanical properties and tensile flow curve of high-strength rail steels[J]. Experimental Mechanics, 2023, 63(5): 839-852. [3] Wang G, Huang L, Zhan X, et al. Strength-hardness correlations of thermal-exposed oxide dispersion strengthened nickel-based superalloy with different grain size distributions[J]. Materials Characterization, 2021, 178: 111178. [4] Phani P S, Oliver W C. A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum[J]. Acta Materialia, 2016, 111: 31-38. [5] 周丽娜, 刘 明, 高 翔, 等. 奥氏体化过程对Cr14Mo4V高温轴承钢微观组织的影响[J]. 金属热处理, 2022, 47(8): 7-15. Zhou Lina, Liu Ming, Gao Xiang, et al. Effect of austenitizing process on microstructure of Cr14Mo4V high temperature bearing steel[J]. Heat Treatment of Metals, 2022, 47(8): 7-15. [6] 崔 毅, 崔继红, 王 艳, 等. 淬火工艺对GCr4Mo4V钢组织及耐磨性的影响[J]. 金属热处理, 2023, 48(9): 23-29. Cui Yi, Cui Jihong, Wang Yan, et al. Influence of quenching process on microstructure and wear resistance of GCr4Mo4V steel[J]. Heat Treatment of Metals, 2023, 48(9): 23-29. [7] 冯 硕, 丁腾威, 李 娜, 等. 深冷处理对轴承钢及其磨削加工表面质量的影响[J]. 表面技术, 2025, 54(9): 248-259. Feng Shuo, Ding Tengwei, Li Na, et al. Effect of cryogenic treatment on bearing steel and grinding surface quality[J]. Surface Technology, 2025, 54(9): 248-259. [8] Li W, Chai J, Liu G, et al. On the role of chemically heterogeneous austenite in cryogenic toughness of maraging steels manufactured via laser powder bed fusion[J]. Acta Materialia, 2024, 276: 120157. [9] 周 琮, 陈献刚, 曹铁山, 等. 调质工艺对Cr-Ni-Mo-V超高强韧钢组织和力学性能的影响[J]. 金属热处理, 2024, 49(2): 135-141. Zhou Cong, Chen Xiangang, Cao Tieshan, et al. Effect of quenching and tempering process on microstructure and mechanical properties of a Cr-Ni-Mo-V ultra-high strength and toughness steel[J]. Heat Treatment of Metals, 2024, 49(2): 135-141. [10] 陈 鹰, 陈再枝, 董 瀚, 等. 经深冷处理的4Cr5MoSiV1钢的回火组织和力学性能[J]. 钢铁研究学报, 2006(5): 29-32. Chen Ying, Chen Zaizhi, Dong Han, et al. Microstructure and mechanical properties of tempered deep cryogenic treated 4Cr5MoSiVl steel[J]. Journal of Iron and Steel Research, 2006(5): 29-32. [11] Cai X, Hu X, Lu X, et al. Exploring the ultrahigh rolling contact fatigue life of M50 bearing steel by adjusting the cryogenic sequence[J]. Journal of Materials Science and Technology, 2024, 169: 243-250. [12] Li J, Zhang X, Bu H, et al. Effects of deep cryogenic treatment on the microstructure evolution, mechanical and thermal fatigue properties of H13 hot work die steel[J]. Journal of Materials Research and Technology, 2023, 27: 8100-8118. [13] 苏 勇, 缪龙静, 于兴福, 等. 回火工艺对8Cr4Mo4V钢微观组织和力学性能的影响[J]. 热加工工艺, 2023, 52(6): 120-123. Su Yong, Miao Longjing, Yu Xingfu, et al. Effects of tempering process on microstructure and mechanical properties of 8Cr4Mo4V steel[J]. Hot Working Technology, 2023, 52(6): 120-123. [14] 邓 彪, 陈 蓬, 王国栋. 回火温度对二次硬化马氏体不锈钢组织和性能的影响[J]. 金属热处理, 2021, 46(9): 65-71. Deng Biao, Chen Peng, Wang Guodong. Effect of tempering temperature on microstructure and properties of secondary hardening martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(9): 65-71. [15] Osada T, Gu Y, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure[J]. Acta Materialia, 2013, 61(5): 1820-1829. [16] 申向阳. 8Cr4Mo4V钢碳化物析出控制及其对组织和力学性能的影响[D]. 沈阳: 沈阳工业大学, 2022. Shen Xiangyang. Control of carbide precipitation in 8Cr4Mo4V steel and its effect on microstructure and mechanical properties[D]. Shenyang: Shenyang University of Technology, 2022. [17] 吴冰冰, 王庆香, 刘晓明, 等. 保温时间对轴承钢中碳化物溶解和贝氏体相变的影响[J]. 金属热处理, 2023, 48(11): 191-195. Wu Bingbing, Wang Qingxiang, Liu Xiaoming, et al. Effect of holding time on carbide dissolution and bainite transformation of bearing steel[J]. Heat Treatment of Metals, 2023, 48(11): 191-195. [18] 信振飞, 迟宏宵, 于 杰, 等. 一种高强耐热轴承钢的微观组织及力学性能[J]. 材料热处理学报, 2024, 45(7): 127-136. Xin Zhenfei, Chi Hongxiao, Yu Jie, et al. Microstructure and mechanical properties of a high strength heat resistant bearing steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(7): 127-136. [19] Danoix F, Danoix R, Akre J, et al. Atom probe tomography investigation of assisted precipitation of secondary hardening carbides in a medium carbon martensitic steels[J]. Journal of Microscopy, 2011, 244(3): 305-310. [20] Pavlina E J, Van Tyne C J. Correlation of yield strength and tensile strength with hardness for steels[J]. Journal of Materials Engineering and Performance, 2008, 17(6): 888-893. [21] Osada T, Nagashima N, Gu Y, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy[J]. Scripta Materialia, 2011, 64(9): 892-895. |