[1] 中国机械工程学会热处理分会. 中国热处理2035发展纲要[J]. 金属热处理, 2025, 50(1): 1-5. [2] 郑 医, 何培刚, 李 宁, 等. 航空渗碳齿轮钢的迭代发展[J]. 航空材料学报, 2023, 43(1): 60-69. Zheng Yi, He Peigang, Li Ning, et al. Material iterative development of aero carburizing gear steels[J]. Journal of Aeronautical Materials, 2023, 43(1): 60-69. [3] Wang B, He Y, Liu Y, et al. Thermodynamics of phase transformation and microstructure evolution of 18Cr2Ni4WA carburized steel during high-temperature tempering[J]. Steel Research International, 2020, 91(8): 202000094. [4] 施友方. 18Cr2Ni4W钢的高温回火对渗碳淬火组织变化的影响[J]. 理化检验-化学分册, 1978(4): 1-2. [5] 何燕萍. M50NiL轴承钢真空低压渗碳表层组织调控机理与工艺研究[D]. 沈阳: 东北大学, 2021. He Yanping. Study on case microstructure evolution and process control of M50NiL bearing steel by vacuum low pressure carburizing[D]. Shenyang: Northeastern University, 2021. [6] 王 冠. M50NiL钢氮碳共渗与渗碳加渗氮复合改性层的组织与性能[D]. 哈尔滨: 哈尔滨工业大学, 2014. Wang Guan. Microstructure and mechanical properties of surface layer produced during nitrocarburizing/carburize and nitriding composite modified of M50NiL steel[D]. Harbin: Harbin Institute of Technology, 2014. [7] Anichkina N L, Bogolyubov V S, Boiko V V, et al. Comparison of methods of gas, ionic, and vacuum nitriding[J]. Metal Science and Heat Treatment, 1989, 31: 170-174. [8] 廖永发, 尚 勇, 李 杨, 等. 空心阴极离子源氮碳共渗改性H13钢的摩擦性能[J]. 金属热处理, 2025, 50(1): 325-331. Liao Yongfa, Shang Yong, Li Yang, et al. Friction properties of H13 steel nitrocarburizing-modified by hollow cathode plasma source[J]. Heat Treatment of Metals, 2025, 50(1): 325-331. [9] Rao K R M, Nouveau C, Trinadh K. Low-temperature plasma nitriding of martensitic stainless steel[J]. Transactions of the Indian Institute of Metals, 2020, 73: 1695-1699. [10] Kumar A, Kaur M, Joseph A, et al. Surface engineering analysis of plasma-nitrided die steels[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(6): 917-931. [11] Wang P, Li S, Liang Y, et al. Effects of carburizing and nitriding sequential treatment on rolling contact fatigue of M50NiL bearing steel[J]. Journal of Materials Science, 2024, 59: 15545-15565. [12] Costa J D, Ferreira J M, Ramalho A L. Fatigue and fretting fatigue of ion-nitrided 34CrNiMo6 steel[J]. Theoretical and Applied Fracture Mechanics, 2001, 35(1): 69-79. [13] Wang G, Cui B, Zou W, et al. Influence of the compound layer on the rolling contact fatigue properties of nitrided medium-carbon steel at the elevated temperature[J]. International Journal of Fatigue, 2022, 157: 106725. [14] Le M, Ville F, Kleber X, et al. Rolling contact fatigue crack propagation in nitrided alloyed steels[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(9): 1192-1208. |