[1] Greer A L. Confusion by design[J]. Nature, 1993, 366(6453): 303-304. [2] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [3] Yeh J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006, 31(6): 633-648. [4] Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science: Materials International, 2011, 21(6): 433-446. [5] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2/3): 233-238. [6] Zhu L, Xue P, Lan Q, et al. Recent research and development status of laser cladding: A review[J]. Optics and Laser Technology, 2021, 138: 106915. [7] Wu Q, Long W, Zhang L, et al. A review on ceramic coatings prepared by laser cladding technology[J]. Optics and Laser Technology, 2024, 176: 110993. [8] Arif Z U, Khalid M Y, Ur Rehman E, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications[J]. Journal of Manufacturing Processes, 2021, 68: 225-273. [9] Salifu S, Olubambi P A. Effects of fabrication techniques on the mechanical properties of high entropy alloys: A review[J]. International Journal of Lightweight Materials and Manufacture, 2024, 7(1): 97-121. [10] 陈明宣, 马 强, 孟君晟, 等. 高熵合金涂层的研究进展[J]. 金属热处理, 2021, 46(9): 7-14. Chen Mingxuan, Ma Qiang, Meng Junsheng, et al. Research progress of high-entropy alloy coating[J]. Heat Treatment of Metals, 2021, 46(9): 7-14. [11] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375-377: 213-218. [12] Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia, 2013, 61(7): 2628-38. [13] Lucas M S, Wilks G B, Mauger L, et al. Absence of long-range chemical ordering in equimolar FeCoCrNi[J]. Applied Physics Letters, 2012, 100(25): 251907. [14] 蔡静雯, 冯璇璇, 王杭宁, 等. CoCrFeNi系高熵合金耐腐蚀性能研究进展[J]. 中国有色金属学报, 2024, 34(12): 3899-3922. Cai Jingwen, Feng Xuanxuan, Wang Hangning, et al. Research progress on corrosion resistance of CoCrFeNi based high entropy alloys[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(12): 3899-3922. [15] 吴刚刚, 汪选国, 曾 鲜, 等. TC4表面激光熔覆AlCoCrFeNiTi0.5高熵合金层的组织与性能[J]. 金属热处理, 2019, 44(12): 1-5. Wu Ganggang, Wang Xuanguo, Zeng Xian, et. al. Microstructure and properties of laser clad AlCoCrFeNiTi0.5 high-entropy alloy coating on TC4 surface[J]. Heat Treatment of Metals, 2019, 44(12): 1-5. [16] Liu H, Gao W, Liu J, et al. Microstructure and properties of CoCrFeNiTi high-entropy alloy coating fabricated by laser cladding[J]. Journal of Materials Engineering and Performance, 2020, 29(11): 7170-7178. [17] Zhang S, Han B, Li M, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating[J]. Intermetallics, 2021, 131(9): 107111. [18] Li Y, Liu H, Liu X, et al. Microstructure, thermostability and tribological behavior of composite CoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding[J]. Optik, 2023, 283: 170899. [19] Cavaliere P. Laser Cladding of Metals[M]. Cham: Springer, 2021. [20] 温诗铸, 黄 平. 摩擦学原理[M]. 北京: 清华大学出版社, 2017. [21] Shi Y, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review[J]. Metals, 2017, 7(2): 43. |