[1] Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying[J]. Optics and Laser Technology, 2021, 134: 106619. [2] Zhu Lida, Xue Pengsheng, Lan Qing, et al. Recent research and development status of laser cladding: A review[J]. Optics and Laser Technology, 2021, 138: 106915. [3] Wang Qian, Li Qian, Zhang Liang, et al. Microstructure and properties of Ni-WC gradient composite coating prepared by laser cladding[J]. Ceramics International, 2022, 48: 7905-7917. [4] Shi Shihong, Xu Aiqin, Fan Jiwei, et al. Study of cobalt-free, Fe-based alloy powder used for sealing surfaces of nuclear valves by laser cladding[J]. Nuclear Engineering and Design, 2012, 245: 8-12. [5] Yang Jiaoxi, Ma Wenyu, Zhang Wentao, et al. The dynamic load-bearing performance of the laser cladding Fe-based alloy on the U75V rail[J]. International Journal of Fatigue, 2022, 165: 107180. [6] Ding Haohao, Mu Xinpeng, Zhu Yi, et al. Effect of laser claddings of Fe-based alloy powder with different concentrations of WS2 on the mechanical and tribological properties of railway wheel[J]. Wear, 2022, 488-489: 204174. [7] 龙伟民, 刘大双, 吴爱萍, 等. 金刚石粒度及添加量对大气环境感应钎涂层耐磨性的影响[J]. 机械工程学报, 2023, 59(12): 225-235. Long Weimin, Liu Dashuang, Wu Aiping, et al. Influence of size and content on the wear resistance of induction brazing diamond coating in air[J]. Journal of Mechanical Engineering, 2023, 59(12): 225-235. [8] 闫 勇. 深松铲尖表面激光熔覆强化试验研究[D]. 大庆: 黑龙江八一农垦大学, 2019. [9] 田永财. 旋耕机刀片表面激光熔覆工艺及其耐磨性研究[D]. 大庆: 黑龙江八一农垦大学, 2016. [10] 王宏立. 65Mn钢表面激光熔覆铁基合金组织及摩擦磨损性能[J]. 应用激光, 2016, 36(4): 385-390. Wang Hongli. Microstructure andtribological behavior of iron-based alloy coating on surface of 65Mn steel by laser cladding[J]. Applied Laser, 2016, 36(4): 385-390. [11] Jiao Yidan, Huang Zhenying, Hu Wenqiang, et al. In-situ hybrid Cr3C2 and γ′-Ni3(Al, Cr) strengthened Ni matrix composites: Microstructure and enhanced properties[J]. Materials Science and Engineering A, 2021, 820: 141524. [12] 何宜柱, 斯松华, 徐 锟, 等. Cr3C2对激光熔覆钴基合金涂层组织与性能的影响[J]. 中国激光, 2004, 31(9): 1143-1148. He Yizhu, Si Songhua, Xu Kun, et al. Effect of Cr3C2 particles on microstructure and corrosion-wear resistance of laser cladding Co-based alloy coating[J]. China Laser, 2004, 31(9): 1143-1148. [13] 雷靖峰. 钛合金TC4表面激光熔覆涂层耐磨损及耐高温氧化性能的研究[D]. 乌鲁木齐: 新疆大学, 2019. [14] 赵 菲, 张 亮, 吴志生, 等. Cr3C2/WC的添加对Stellite 12熔覆层耐磨耐蚀性的影响[J]. 表面技术, 2024, 53(1): 135-142. Zhao Fei, Zhang Liang, Wu Zhisheng, et al. Effect of Cr3C2/WC on wear and corrosion resistance of Stellite 12 cladding layer[J]. Surface Technology, 2024, 53(1) 135-142. [15] Srinivasan Arthanari, Li Yuhang, Nie Lu, et al. Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys[J]. Journal of Alloys and Compounds, 2020, 848: 156598. [16] Li Qiang, Song Guiming, Zhang Yongzhong, et al. Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC[J]. Wear, 2003, 254: 222-229. [17] Shang Fanmin, Chen Suiyuan, Zhang Chenyi, et al. The effect of Si and B on formability and wear resistance of preset-powder laser cladding W10V5Co4 alloy steel coating[J]. Optics and Laser Technology, 2021, 134: 106590. [18] 李治恒. TiC对激光熔覆铁基合金涂层组织与性能的影响[D]. 乌鲁木齐: 新疆大学, 2021. [19] Wu Qilong, Long Weimin, Zhang Lei, et al. A review on ceramic coatings prepared by laser cladding technology[J]. Optics and Laser Technology, 2024, 176: 110993. [20] 夏国峰. 铧式犁体表面激光熔覆铁基涂层制备及性能研究[D]. 济南: 济南大学, 2021. [21] Wu Qianlin, Li Wenge, Zhong Ning. Corrosion behavior of TiC particle-reinforced 304 stainless steel[J]. Corrosion Science, 2011, 53: 4258-4264. |