[1] Liu C J, Gadelmeier C, Lu S L, et al. Tensile creep behavior of HfNbTaTiZr refractory high entropy alloy at elevated temperatures[J]. Acta Materialia, 2022, 237: 118188. [2] Shahmir H, Mehranpour M S, Arsalan Shams S A, et al. Twenty years of the CoCrFeNiMn high entropy alloy: Achieving exceptional mechanical properties through microstructure engineering[J]. Journal of Materials Research and Technology, 2023, 23: 3362-3423. [3] Shahmir H, Asghari-Rad P, Mehranpour M S, et al. Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high entropy alloy by severe plastic deformation[J]. Materials Science and Engineering A, 2021, 807: 140875. [4] Yeh J W. Recent progress in high entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006, 31(6): 633-648. [5] Asadikiya M, Yang S, Zhang Y, et al. A review of the design of high entropy aluminum alloys: A pathway for novel Al alloys[J]. Journal of Materials Science, 2021, 56(21): 12093-12110. [6] Yeh J W, Chang S Y, Hong Y D, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Materials Chemistry and Physics, 2007, 103(1): 41-46. [7] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [8] Zhang C, Zhu C, Cao P, et al. Aged metastable high entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy[J]. Acta Materialia, 2020, 199: 602-612. [9] An Z, Mao S, Liu Y, et al. Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high entropy alloy[J]. Acta Materialia, 2023, 243: 118516. [10] An Z, Mao S, Jiang C, et al. Achieving superior combined cryogenic strength and ductility in a high entropy alloy via the synergy of low stacking fault energy and multiscale heterostructure[J]. Scripta Materialia, 2024, 239: 115809. [11] Li Z, Pradeep K G, Deng Y, et al. Metastable high entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606): 227-230. [12] 赵思杰, 李 航, 牛利冲, 等. Al含量对热轧FeMnCoCr系高熵合金组织和性能的影响[J]. 金属热处理, 2022, 47(5): 47-52. Zhao Sijie, Li Hang, Niu Lichong, et al. Effect of Al content on microstructure and properties of hot rolled FeMnCoCr high entropy alloy[J]. Heat Treatment of Metals, 2022, 47(5): 47-52. [13] 李 航, 李 杰, 褚延朋, 等. 冷轧退火对FeMnCoCrAl高熵合金组织和力学性能的影响[J]. 金属热处理, 2020, 45(11): 105-114. Li Hang, Li Jie, Chu Yanpeng, et al. Effect of cold rolling and annealing on microstructure and mechanical properties of FeMnCoCrAl high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(11): 105-114. [14] 李 杰, 吴凯迪, 牛利冲, 等. 退火温度对(Fe50Mn30Co10Cr10)97Al3高熵合金再结晶行为及力学性能的影响[J]. 稀有金属材料与工程, 2023, 52(12): 4251-4259. Li Jie, Wu Kaidi, Niu Lichong, et al. Effect of annealing temperatures on recrystallization behavior and mechanical properties of (Fe50Mn30Co10Cr10)97Al3 high entropy alloy[J]. Rare Metal Materials and Engineering, 2023, 52(12): 4251-4259. [15] 耿赵文, 李湘龙, 柏春燕, 等. 间隙强化FeMnCoCr亚稳高熵合金及其低温/临氢服役性能研究进展[J]. 中国有色金属学报, 2024, 34(2): 422-442. Geng Zhaowen, Li Xianglong, Bo Chunyan, et al. Progress in study of FeMnCoCr matestable high entropy alloy toughening pathways and service performance under hydrogen environment at cryogenic temperature[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(2): 422-442. [16] Liu Q, Li B, Yi C H, et al. Mechanical properties and deformation mechanisms of C-doped interstitial high entropy alloy CrMnFeCoNi: Effects of strain rate and C content[J]. Intermetallics, 2024, 167: 108237. [17] Seol J B, Bae J W, Li Z, et al. Boron dopedultrastrong and ductile high entropy alloys[J]. Acta Materialia, 2018, 151: 366-376. [18] Tu J, Xu K, Liu Y, et al. Characterization of deformation substructure evolution in metastable Fe49Mn30Co10Cr10B1 interstitial high entropy alloy[J]. Intermetallics, 2022, 144: 107508. [19] Li Z. Interstitial equiatomic CoCrFeMnNi high entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior[J]. Acta Materialia, 2019, 164: 400-412. [20] Li Z, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high entropy alloys[J]. Scientific Reports, 2017, 7(1): 40704. [21] Li X, Ou M, Wang M, et al. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy[J]. Journal of Materials Science and Technology, 2021, 60: 177-185. [22] Barnett M R, Nave M D, Bettles C J. Deformation microstructures and textures of some cold rolled Mg alloys[J]. Materials Science and Engineering A, 2004, 386(1/2): 205-211. [23] 崔 宇. C合金化对CrFeCoNi高熵合金机械性能和腐蚀行为的影响[D]. 武汉: 武汉科技大学, 2020. [24] Guimarães J R C, Rios P R. Martensite start temperature and the austenite grain-size[J]. Journal of Materials Science, 2010, 45(4): 1074-1077. [25] Li Z, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high entropy alloy: Grain size and phase fraction effects on deformation behavior[J]. Acta Materialia, 2017, 131: 323-335. [26] Dash S, Brown N. An investigation of the origin and growth of annealing twins[J]. Acta Metallurgica, 1963, 11(9): 1067-1075. [27] Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces[J]. Current Opinion in Solid State and Materials Science, 2014, 18(4): 253-261. [28] Peng J, Li Z, Fu L, et al. Carbide precipitation strengthening in fine-grained carbon-doped FeCoCrNiMn high entropy alloy[J]. Journal of Alloys and Compounds, 2019, 803: 491-498. [29] Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.%Mn-0.6wt.%C TWIP steel observed by electron channeling contrast imaging[J]. Acta Materialia, 2011, 59(16): 6449-6462. |