[1] Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors[J]. Journal of Nuclear Materials, 2007, 371(1/3): 37-52. [2] 黄群英, 郁金南, 万发荣, 等. 聚变堆低活化马氏体钢的发展[J]. 核科学与工程, 2004, 24(1): 56-64. Huang Qunying, Yu Jinnan, Wan Farong, et al. The development of low activation martensitic steels for fusion reactor[J]. Nuclear Science and Engineering, 2004, 24(1): 56-64. [3] Yvon P, Carr F. Structural materials challenges for advanced reactor systems[J]. Journal of Nuclear Materials, 2009, 385(2): 217-222. [4] Bloom E, Conn R, Davis J, et al. Low activation materials for fusion applications[J]. Journal of Nuclear Materials, 1984, 122(1): 17-26. [5] 吕亮亮, 李垣明, 周 毅, 等. 快堆用HT-9研究进展[J]. 核动力工程, 2016, 37(S1): 30-33. Lü Liangliang, Li Yuanming, Zhou Yi, et al. Research progress of HT-9 for fast reactors[J]. Nuclear Power Engineering, 2016, 37(S1): 30-33. [6] Dai Y, Gavillet D, Restani R. Stressed capsules of austenitic and martensitic steels irradiated in SINQ Target-4 in contact with liquid lead-bismuth eutectic[J]. Journal of Nuclear Materials, 2008, 377(1): 225-231. [7] Hirose T, Shiba K, Sawai T, et al. Effects of heat treatment process for blanket fabrication on mechanical properties of F82H[J]. Journal of Nuclear Materials, 2004, 329-333(1): 324-327. [8] Ono H, Kasada R, Kimura A. Specimen size effects on fracture toughness of JLF-1reduced-activation ferritic steel[J]. Journal of Nuclear Materials, 2004, 329-333(2): 1117-1121. [9] Fernandez P, Lancha A, Lapena J, et al. Metallurgical properties of reduced activation martensitic steel Eurofer’97 in the as-received condition and after thermal ageing[J]. Journal of Nuclear Materials, 2002, 307-311(1): 495-499. [10] Schafer L. Tensile and impact behavior of the reduced-activation steels OPTIFER and F82H mod[J]. Journal of Nuclear Materials, 2000, 283-287: 707-710. [11] 付海英, 王平怀, 谌继明. CLF-1低活化铁素体/马氏体钢的热处理工艺[J]. 机械工程材料, 2010, 34(1): 28-32, 37. Fu Haiying, Wang Pinghuai, Chen Jiming. Heat treatment process for CLF-1 reduced activation ferritic/martensitic steel[J]. Materials For Mechanical Engineering, 2010, 34(1): 28-32, 37. [12] Huang Q, Li C, Li Y, et al. Progress in development of China low activation martensitic steel for fusion application[J]. Journal of Nuclear Materials, 2007, 367(1): 142-146. [13] Ma H, He Y, Lee K, et al. Effect of heat treatment on the microstructural evolution of a 13Cr martensitic stainless steel[J]. Key Engineering Materials, 2017, 727(1): 29-35. [14] 蒋明忠, 赵 勇, 潘钱付, 等. F/M钢包壳管材热处理工艺优化[J]. 金属热处理, 2022, 47(6): 25-32. Jiang Mingzhong, Zhao Yong, Pan Qianfu, et al. Optimization of heat treatment process for F/M steel cladding pipes[J]. Heat Treatment of Metals, 2022, 47(6): 25-32. [15] 成海涛. 无缝钢管缺陷与预防[M]. 成都: 四川科学技术出版社, 2007: 311-312. [16] 刘晨曦, 毛春亮, 崔 雷, 等. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538. Liu Chenxi, Mao Chunliang, Cui Lei, et al. Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels[J]. Acta Metallurgica Sinica, 2021, 57(11): 1521-1538. [17] 崔忠圻. 金属学与热处理[M]. 北京: 机械工业出版社. 2010: 261-262. [18] 崔忠圻, 刘北兴. 金属学与热处理原理[M]. 哈尔滨: 哈尔滨工业大学出版社. 1998: 197-198. |