[1] 邓燕君. Al-Cu-Li合金形变热处理过程中析出相演变规律及力学性能研究[D]. 重庆: 重庆大学, 2017. Deng Yanjun. Study on the evolution of precipitates and mechanical property of Al-Cu-Li alloy during thermomechanical treatment[D]. Chongqing: Chongqing University, 2017. [2] 李金磊, 苏 勇, 马腾迪, 等. 发动机缸盖用新型高强耐高温铝合金材料[C]//安徽省铸造学会第八届铸造技术大会论文集. 2013: 42-45. [3] Li Jinfeng, Huang Jialei, Liu Danyang, et al. Distribution and evolution of aging precipitates in Al-Cu-Li alloy with high Li concentration[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 15-24. [4] Li R, Takata N, Suzuki A, et al. Design of heat-resistant Al-Mg-Zn-Cu-Ni quinary alloy: Controlling intermetallic phases and mechanical performance at elevated temperature[J]. Materials Science and Engineering A, 2022, 857: 144055. [5] Yang Qingbo, Deng Yanjun, Yang Mou, et al. Effect of Al3Zr particles on hot-compression behavior and processing map for Al-Cu-Li based alloys at elevated temperatures[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 872-882. [6] Shyam A, Roy S, Shin D, et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation[J]. Materials Science and Engineering A, 2019, 765: 138279. [7] Fan J, Yang B, Wang Y, et al. Enhancing the tensile strength and heat resistance induced by high-density Ω phases in an Al-Cu-Mg-Ag alloy[J]. Journal of Materials Research and Technology, 2022, 18: 3347-3357. [8] 陈永来, 李劲风, 吕宏军, 等. 高强高韧Al-Cu-Li-Mg-Zr-Zn-Mn合金热变形行为[J]. 宇航材料工艺, 2007, 37(6): 44-49. Chen Yonglai, Li Jinfeng, Lü Hongjun, et al. Hot deformation behavior of an Al-Cu-Li-Mg-Zr alloy containing Zn and Mn[J]. Aerospace Materials and Technology, 2007, 37(6): 44-49. [9] Milligan B, Ma D, Allard L, et al. Dislocation-θ′(Al2Cu) interactions during creep deformation of an Al-Cu alloy[J]. Scripta Materialia, 2022, 217: 114739. [10] Li G, Liao H, Zheng J, et al. Synergistic effect of joint addition of Sb+Mn on high temperature strengthening in Al-4Cu heat-resistant alloy[J]. Materials Science and Engineering A, 2022, 851: 143623. [11] Michi R A, Bahl S, Fancher C M, et al. Load shuffling during creep deformation of an additively manufactured Al-Cu-Mn-Zr alloy[J]. Acta Materialia, 2023, 244: 118557. [12] Milligan B K, Roy S, Hawkins C S, et al. Impact of microstructural stability on the creep behavior of cast Al-Cu alloys[J]. Materials Science and Engineering A, 2020, 772: 138697. [13] Shower P, Poplawsky J, Bahl S, et al. The role of Si in determining the stability of the θ′ precipitate in Al-Cu-Mn-Zr alloys[J]. Journal of Alloys and Compounds, 2021, 862: 158152. [14] Rakhmonov J U, Bahl S, Shyam A, et al. Cavitation-resistant intergranular precipitates enhance creep performance of θ′-strengthened Al-Cu based alloys[J]. Acta Materialia, 2022, 228: 117788. [15] 马晓光, 杨玉艳, 罗 锐, 等. 航空航天2050 Al-Cu-Li合金的热变形行为[J]. 航空材料学报, 2021, 41(5): 44-50. Ma Xiaoguang, Yang Yuyan, Luo Rui, et al. Investigation on hot deformation behavior of 2050 Al-Cu-Li alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 44-50. |