[1] 徐 浩, 刘建华, 刘洪波, 等. 高锰奥氏体低温钢发展现状、成分设计及热处理焊接工艺分析[J]. 特殊钢, 2024, 45(2): 1-10. Xu Hao, Liu Jianhua, Liu Hongbo, et al. Composition design and heat treatment welding process analysis of high-manganese austenitic cryogenic steel[J]. Special Steel, 2024, 45(2): 1-10. [2] 杨晓峰, 班慧勇, 陈 宏, 等. 低温钢的机理及研发进展和展望[J]. 钢结构(中英文), 2022, 37(1): 1-8. Yang Xiaofeng, Ban Huiyong, Chen Hong, et al. Mechanism, research advances and prospect of steel for cryogenic service[J]. Steel Construction(Chinese & English), 2022, 37(1): 1-8. [3] 李先林. 南极泰山科考站结构设计[J]. 建筑结构, 2017, 47(7): 30-32, 42. Li Xianlin. Structural design of Taishan scientific research station at the south pole[J]. Building Structure, 2017, 47(7): 30-32, 42. [4] 孙弘历, 段梦凡, 赵海湉, 等. 国内外南极科考站建筑节能策略[J]. 建筑节能, 2020, 48(9): 1-7. Sun Hongli, Duan Mengfan, Zhao Haitian, et al. Energy-saving strategies of Chinese and foreign antarctic scientific research stations[J]. Building Energy Efficiency, 2020, 48(9): 1-7. [5] Gyubaek A, Jeongung P, Hongkyu P, et al. Fracture toughness characteristics of high-manganese austenitic steel plate for application in a liquefied natural gas carrier[J]. Metals, 2021, 11(12): 2047. [6] 王 猛. Ni系超低温用钢强韧化机理研究及生产技术开发[D]. 沈阳: 东北大学, 2017. Wang Meng. Study on strengthening and toughening mechanisms and development of industrial manufacturing technology for Ni-containing cryogenic steels[D]. Shenyang: Northeastern University, 2017. [7] 谢章龙. 超低温用9Ni钢强韧化机理研究及生产技术开发[D]. 沈阳: 东北大学, 2012. Xie Zhanglong. Investigation on strengthening and toughening mechanisms of cryogenic application 9Ni steels and development of their industrial manufacturing technology[D]. Shenyang: Northeastern University, 2012. [8] 陈 欢, 孙新军, 王小江, 等. 高锰奥氏体低温钢力学性能及Hall-Petch关系的研究[J]. 材料科学与工艺, 2018, 26(5): 11-18. Chen Huan, Sun Xinjun, Wang Xiaojiang, et al. Mechanical properties and Hall-Petch relationship of high manganese austenitic cryogenic steel[J]. Materials Science and Technology, 2018, 26(5): 11-18. [9] Ren J K, Mao D S, Gai Y, et al. High carbon alloyed design of a hot-rolled high-Mn austenitic steel with excellent mechanical properties for cryogenic application[J]. Materials Science and Engineering A, 2021, 827: 141959. [10] Ren J K, Chen Q Y, Chen J, et al. Role of vanadium additions on tensile and cryogenic-temperature charpy impact properties in hot-rolled high-Mn austenitic steels[J]. Materials Science and Engineering A, 2021, 811: 141063. [11] Chen J, Ren J, Liu Z, et al. The essential role of niobium in high manganese austenitic steel for application in liquefied natural gas tanks[J]. Materials Science and Engineering A, 2020, 772: 138733. [12] Wang M, Liu Z, Li C. Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 238-249. [13] 李恒坤, 孙新军, 赵柏杰, 等. 新型锰镍系低温钢应变时效行为研究[J]. 钢铁, 2018, 53(4): 74-77, 96. Li Hengkun, Sun Xinjun, Zhao Bojie, et al. Strain aging of new-type Mn-Ni low temperature steel[J]. Iron and Steel, 2018, 53(4): 74-77, 96. [14] 王堤鹤, 庞启航, 李维娟, 等. 镍元素对低温钢组织演变及综合力学性能影响的研究进展[J]. 材料研究与应用, 2023, 17(6): 1051-1059. Wang Dihe, Pang Qihang, Li Weijuan, et al. Research progress on the influence of nickel on microstructure evolution and comprehensive mechanical properties of low temperature steel[J]. Materials Research and Application, 2023, 17(6): 1051-1059. [15] 李员妹, 孙新军, 雍岐龙, 等. 回火温度对5.5Ni低温钢组织和力学性能的影响[J]. 材料研究学报, 2015, 29(11): 860-866. Li Yuanmei, Sun Xinjun, Yong Qilong, et al. Effect of tempering temperature on microstructure and mechanical properties of 5.5Ni cryogenic steel[J]. Chinese Journal of Materials Research, 2015, 29(11): 860-866. [16] 刘海生, 李 敬, 王会刚, 等. 热处理对不同碳含量3.5Ni钢力学性能和低温韧性的影响[J]. 金属热处理, 2021, 46(10): 182-186. Liu Haisheng, Li Jing, Wang Huigang, et al. Effect of heat treatment on mechanical properties and low temperature toughness of 3.5Ni steel with different carbon content[J]. Heat Treatment of Metals, 2021, 46(10): 182-186. [17] 刘文斌, 战国锋, 黄 峰. 回火温度对7Ni钢组织和性能的影响[J]. 金属热处理, 2020, 45(12): 63-68. Liu Wenbin, Zhan Guofeng, Huang Feng. Effect of tempering temperature on microstructure and properties of 7Ni steel[J]. Heat Treatment of Metals, 2020, 45(12): 63-68. [18] Wu J S, Sun J G, Ma S Q, et al. Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel[J]. Journal of Materials Processing Technology, 2013, 213(1): 120-128. [19] 谢章龙, 刘振宇, 陈 俊, 等. 9Ni钢薄板的奥氏体化温度及强韧化因素分析[J]. 钢铁研究学报, 2011, 23(9): 37-41. Xie Zhanglong, Liu Zhenyu, Chen Jun, et al. Austenitizing temperature for 9Ni steel thin plate and analysis of strengthening and toughening factors[J]. Journal of Iron and Steel Research, 2011, 23(9): 37-41. [20] 赵宏禹, 刘荣佩, 王长军, 等. QLT与QT热处理工艺对9Ni低温钢性能的影响[J]. 金属热处理, 2018, 43(12): 100-104. Zhao Hongyu, Liu Rongpei, Wang Changjun, et al. Influence of QLT and QT heat treatment process on properties of 9Ni steel[J]. Heat Treatment of Metals, 2018, 43(12): 100-104. [21] 杨跃辉. 9Ni钢断裂过程中的裂纹扩展行为[J]. 金属热处理, 2015, 40(12): 177-180. Yang Yuehui. Propagation behavior of crack in 9Ni steel during fracture process[J]. Heat Treatment of Metals, 2015, 40(12): 177-180. [22] 肖大恒, 汤 伟, 罗 登, 等. 超大型液化石油气船用低温钢组织性能[J]. 钢铁, 2020, 55(4): 82-87. Xiao Daheng, Tang Wei, Luo Deng, et al. Microstructure and properties of low temperature steel for ultra large liquefied petroleum gas carrier[J]. Iron and Steel, 2020, 55(4): 82-87. [23] 熊 涛, 徐 光, 袁 清, 等. 含镍低温压力容器钢的静态CCT曲线研究[J]. 热加工工艺, 2022, 51(4): 42-45. Xiong Tao, Xu Guang, Yuan Qing, et al. Study on static CCT curve of Ni-containing low temperature pressure vessel steel[J]. Hot Working Technology, 2022, 51(4): 42-45. [24] 王新志, 张 可, 黄 重, 等. Cr-Ni-Cu桥梁耐候钢的连续冷却相变及其组织和硬度[J]. 金属热处理, 2023, 48(2): 17-22. Wang Xinzhi, Zhang Ke, Huang Zhong, et al. Continuous cooling transformation of Cr-Ni-Cu bridge weathering steel and its microstructure and hardness[J]. Heat Treatment of Metals, 2023, 48(2): 17-22. [25] 黄 重, 张 可, 徐党委, 等. Q500qENH桥梁耐候钢CCT曲线的测定及其组织、硬度[J]. 材料热处理学报, 2022, 43(11): 121-127. Huang Zhong, Zhang Ke, Xu Dangwei, et al. Determination of CCT curve, microstructure and hardness of Q500qENH bridge weathering steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(11): 121-127. |