[1] Yu Y, Xu N, Zhu S, et al. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application[J]. Journal of Materials Scienceand Technology, 2021, 69: 48-59. [2] 金立兵, 梁新亚, 王 珍, 等. 碳钢在海水全浸区腐蚀的研究进展[J]. 腐蚀与防护, 2020, 41(10): 33-38. Jin Libin, Liang Xinya, Wang Zhen, et al. Researchprogress of carbon steel corrosion in seawater full immersion zone[J]. Corrosion and Protection, 2020, 41(10): 33-38. [3] Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization[J]. Construction and Building Materials, 2020, 23(8): 117763-117769. [4] Zhan S W, Tang J H, Wang F T, et al. Tribological behavior of laser clad TiZrHfCrMoW high-entropy alloy coating in air and in simulatedbody solution[J]. Surface Technology, 2023, 52: 29-37. [5] 张 欣, 蒋淑英, 杨昊炎, 等. CoCrMnNiMox高熵合金涂层的组织和耐磨耐蚀性研究[J]. 材料保护, 2023, 56(6): 106-114. Zhang Xin, Jiang Shuying, Yang Haoyan, et al. Study on microstructure and wear and corrosion resistance of CoCrMnNiMox high entropy alloy coatings[J]. Materials Protection, 2023, 56(6): 106-114. [6] 陈宣明, 马 强, 孟君晟, 等. 高熵合金涂层的研究进展[J]. 金属热处理, 2021, 46(9): 7-14. Chen Xuanming, Ma Qiang, Meng Junsheng, et al. Research progress of high-entropy alloy coatings[J]. Heat Treatment of Metals, 2021, 46(9): 7-14. [7] Zhang P, Li Z W, Liu H M, et al. Recent progress on the microstructure and properties of high entropy alloy coatings prepared by laser processing technology: A review[J]. Journal of Manufacturing Processes, 2022, 76: 397-411. [8] Shang C Y, Eugen A, Sun J, et al. CoCrFeNi(W1-xMox) high entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Materials and Design, 2017, 117: 193-202. [9] Pogrebnjak A D, Yakushchenko I V, Bondar O V, et al. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings[J]. Journal of Alloys and Compounds, 2016, 679: 155-163. [10] Zhao S L, Chen X Z. Phase formation and mechanical properties of Al1.2CoxCrFeNi high entropy alloys[J]. Jornal of Materials Engineering, 2023, 51 (5): 104-111. [11] Shu F Y, Wu L, Zhao H Y, et al. Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating[J]. Materials Letters, 2018, 211: 235-238. [12] Chen J, Zhou X Y, Wang W L, et al. A review on fundamental of high entropy alloys with promising high-temperature properties[J]. Journal of Alloys and Compounds, 2018, 760: 15-30. [13] Li F, Yang Y, Zhao Y C, et al. Corrosion behaviors and mechanism of AlxCrFeMnCu high entropy alloys in a 3.5wt%NaCl solution[J]. Corrosion Science, 2024, 233: 112087. [14] 张孝贤, 解 芳, 翟长生, 等. 感应熔涂温度对FeCoCrNiMoBSi高熵合金涂层抗高温氧化性能的影响[J]. 金属热处理, 2023, 48(6): 52-58. Zhang Xiaoxian, Xie Fang, Zhai Changsheng, et al. Effect of induced cladding temperature on high temperature oxidation resistance of FeCoCrNiMoBSi high entropy alloy coating[J]. Heat Treatment of Metals, 2023, 48(6): 52-58. [15] Zhou Z D, Liang X B, Chen Y X, et al. Effects of al addition on microstructure and wear resistance of high-velocity-oxygen-fuel-sprayed FeCoNiCrMn high entropy alloy coating[J]. Science of Advanced Materials, 2019, 11(5): 685-693. [16] Nadutov V M, Proshak A V, Makarenko S Y, et al. Creation andmössbauer studies of high entropy physical vapor deposition by cathode arc evaporation (PVD CAE) coating AlFeCoNiCuCr[J]. Materialwissenschaft und Werkstofftechnik, 2016, 47(2): 272-277. [17] Zhang G J, Tian Q W, Yin K X, et al. Microstructure, hardness and wear behavior of AlxCoCrFe2Ni (x=0.3, 0.7, 1.0) high entropy alloy coatings prepared by laser cladding[J]. JOM, 2021, 73(11): 3597-3605. [18] 斯松华, 周芳颖, 王建国, 等. 冷轧及热处理对Al0.3CoCrFeNi高熵合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 103-107. Si Songhua, Zhou Fangying, Wang Jianguo, et al. The effect of cold rolling and heat treatment on the microstructure and properties of Al0.3CoCrFeNi high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(3): 103-107. [19] Cai Y C, Chen Y, Marwana M S, et al. Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high entropy alloy amorphous coating[J]. Materials Letters, 2018, 211: 235-238. [20] Li Q Y, Zhang H, Li D C, et al. WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition[J]. Materials, 2019, 12: 533-539. [21] Liu D Z, Zhao J, Li Y, et al. Effects of boron content on microstructure and wear properties of FeCoCrNiBx high-entropy alloy coating by laser cladding[J]. Applied Sciences, 2020, 10(1): 49. [22] Takeuchi A, Inoue A . Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46: 2817-2829. [23] Zhang C, Chen G J, Dai P Q, Effects of aging on microstructure and hardness of FeCoCrNiB0.5 high-entropy alloy coating prepared by laser cladding[J]. Materials Science Forum, 2015, 40: 146-151. [24] 李栋梁, 周 芳, 余师豪. 激光熔覆FeCrNiMnMoxB0.5高熵合金涂层组织与耐蚀性能[J]. 强激光与粒子束, 2016, 28(2): 196-201. Li Dongliang, Zhou Fang, Yu Shihao. Microstrucrure and corrosion resistance of FeCrNiMnMoxB0.5 high entropy alloy coating prepared by laser cladding[J]. High Power Laser and Particle Beams, 2016, 28(2): 190-195. [25] Juan Y F, Li J, Jiang Y Q, et al. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings[J]. Applied Surface Science, 2019, 465: 700-714. [26] Kaushal K, Chandan A K, Hung P H, et al. Effect of Si on the evolution of plasticity mechanisms, grain refinement and hardness during high-pressure torsion of a non-equiatomic CoCrMnNi multi-principal element alloy[J]. International Journal of Plasticity, 2023, 169: 103720. [27] Gorban V F, Firstov S A, Krapivka M O. The influence of different factors on physicomechanical properties of high entropy alloys with FCC lattice[J]. Materials Science, 2023, 59(2): 145-151. [28] Zhang W, Ma Z C, Li C F, et al. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy[J]. Journal of Materials Science and Technology, 2022, 114: 102-110. [29] 庞 铭, 丁前峰. 激光熔覆FeCoNiCrAl高熵合金的组织与性能[J]. 材料热处理学报, 2020, 41(8): 108-113. Pang Ming, Ding Qianfeng. Microstructure and properties of FeCoNiCrAl high entropy alloy by laser cladding[J]. Transactions of Materials and Heat Treament, 2020, 41(8): 108-113. [30] Xu X D, Liu P, Guo S, et al. Nanoscale phase separation in a FCC-based CoCrCuFeNiAl0. 5 high-entropy alloy[J]. Acta Materialia, 2015, 84: 145-152. [31] 杨佳伟, 牛 伟, 孙荣禄, 等. Mo含量对激光熔覆CoCrFeNiW0.6Mox高熵合金涂层组织与性能的影响[J]. 表面技术, 2024, 53(3): 170-177. Yang Jiawei, Niu Wei, Sun Ronglu, et al. Effect of Mo content on microstructure and properties of laser cladding CoCrFeNiW0.6Mox high entropy alloy coating[J]. Surface Technology, 2024, 53(3): 170-177. [32] Qin G, Chen R R, Zheng H T, et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition[J]. Journal of Materials Science and Technology, 2019, 35(4): 578-583. [33] Doménech-Carbó Antonio, Doménech-Carbó María Teresa, Redondo-Marugán Jorge, et al. Electrochemical characterization of corrosion products in leaded bronze sculptures considering ohmic drop effects on Tafel analysis[J]. Electroanalysis, 2016, 28(4): 833-845. [34] Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth[J]. Journal of the Electrochemical Society, 1994, 141(11): 3028-3040. [35] Sun Y P, Wang Z, Yang H. J, et al. Effects of the element La on the corrosion properties of CrMnFeNi high entropy alloys[J]. Journal of Alloys and Compounds, 2020, 84(2): 155825-155831. [36] 解 芳, 翟长生, 荣海松, 等. 激光熔覆功率对FeCrNiCoMoBSi高熵合金涂层电化学腐蚀性能的影响[J]. 功能材料, 2024, 55 (4): 4029-4036. Xie Fang, Zhai Changsheng, Rong Haisong, et al. Effect of laser cladding power on electrochemical corrosion properties of FeCrNiCoMoBSi high-entropy alloy coatings[J]. Functional Materials, 2024, 55(4): 4029-4036. [37] Xiong X, Zhang N, Niu T, et al. An electrochemical method for characterizing the structure of double-layer capacity[J]. Anti-Corrosion Methods and Materials, 2023, 70(6): 542-546. [38] 邢伯伟. CoCrFeNi系高熵合金涂层电化学腐蚀与钝化行为研究[D]. 沈阳: 沈阳工业大学, 2022. Xing Bowei. Electrochemical corrosion and passivation behavior of CoCrFeNi system high-entropy alloy coatings[D]. Shenyang: Shenyang University of Technology, 2022. [39] Li Z, Zhu Z, Wang J, et al. Optimization and understanding of corrosion inhibitors for cooling water system[J]. Anti-Corrosion Methods and Materials, 2023, 70(5): 259-267. [40] 冯 力, 王兆钦, 赵燕春, 等. Fe元素含量对FeCrMnAlCu高熵合金在3.5%NaCl溶液中耐腐蚀性能的影响[J]. 稀有金属材料与工程, 2024, 53(12): 3373-3382. Feng Li, Wang Zhaoqin, Zhao Yanchun, et al. Influence of Fe content on corrosion resistance of FeCrMnAlCu high-entropy alloys in 3.5%NaCl solution[J]. Rare Metal Materials and Engineering, 2024, 53(12): 3373-3382. [41] 冯 力, 王梦琪, 赵燕春, 等. FeCrMnAlCux高熵合金在0.5 mol/L H2SO4溶液中耐腐蚀性能的研究[J]. 稀有金属材料与工程, 2024, 53(1): 85-94. Feng Li, Wang Mengqi, Zhao Yanchun, et al. Corrosion resistance of FeCrMnAlCux high-entropy alloys in 0.5 mol/L H2SO4 solution[J]. Rare Metal Materials and Engineering, 2024, 53(1): 85-94. [42] 鲁思渊, 张传郎, 李晋锋. Al合金化对3D打印高熵合金点蚀行为影响机理研究[C]//中国腐蚀与防护学会. 第十二届全国腐蚀与防护大会论文集, 2023: 12. |