[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2] Cantor B, Chang I T, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375: 213-218. [3] 曹 前, 蔚鸾翀, 李基民, 等. (Ti35Zr40Nb25)(100-x)Alx(x=0, 5, 10, 15, 20)高熵合金相组成、组织和力学性能[J]. 材料工程, 2024, 52(1): 108-117. Cao Qian, Wei Luanchong, Li Jimin, et al. Phases, microstructure and mechanical properties of (Ti35Zr40Nb25)(100-x)Alx (x=0, 5, 10, 15, 20) high entropy alloys[J]. Journal of Materials Engineering, 2024, 52(1): 108-117. [4] Yi J, Wang L, Xu M, et al. Microstructure and mechanical properties of refractory high-entropy alloy HfMoNbTiCr[J]. Materials and Technologies, 2021, 55(2): 305-310. [5] Zhang Y, Li Y. Effect of Zr content on microstructure and mechanical properties of MoNbTaTiZrx refractory high entropy alloy[J]. Journal of Physics: Conference Series, 2024, 2783: 012065. [6] Juan C C, Tsai M H, Tsaia C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 2015, 62: 76-83. [7] Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafinegrained CoCrFeMnNi high-entropy alloy with fully recrystallized structure[J]. Materials Today Nano, 2018, 4: 46-53. [8] Chen L B, Wei R, Tang K, et al. Ductile-brittle transition of carbon alloyed Fe40Mn40Co10Cr10 high entropy alloys[J]. Materials Letters, 2019, 236: 416-419. [9] Xiong F, Wu Y, Liu X, et al. Enhancing cryogenic yield strength and ductility of the Al0.1CoCrFeNi high-entropy alloy by synergistic effect of nanotwins and dislocations[J]. Scripta Materialia, 2023, 232: 115495. [10] Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755. [11] Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227-230. [12] Li Z M, Raabe D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties[J]. JOM, 2017, 69: 2009-2017. [13] Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017, 124: 143-150. [14] Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scripta Materialia, 2020, 187: 202-209. [15] He J Y, Wang H, Wu Y, et al. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys[J]. Intermetallics, 2016, 79: 41-52. [16] 刘 亮. 热处理对CoCrFeNiMo高熵合金组织与硬度的影响[J]. 金属热处理, 2016, 41(8): 29-32. Liu Liang. Effect of heat treatment on microstructure and hardness of CoCrFeNiMo high entropy alloy[J]. Heat Treatment of Metals, 2016, 41(8): 29-32. [17] 孛海娃, 王沛锦, 艾桃桃. 时效处理对(FeNiCoCr)90Al5Ti5高熵合金L12型析出相及力学性能的影响[J]. 材料工程, 2024, 52(4): 146-154. Bo Haiwa, Wang Peijin, Ai Taotao. Effect of aging treatment on L12 precipitated phase and mechanical properties of (FeNiCoCr)90Al5Ti5 high entropy alloy[J]. Journal of Materials Engineering, 2024, 52(4): 146-154. [18] Stolze K, Cevallons F A, Kong T, et al. High-entropy alloy superconductors on an α-Mn lattice[J]. Journal of Materials Chemistry C, 2018, 39: 1039. [19] Sha C H, Zhou Z F, Xie Z H, et al. Extremely hard, α-Mn type high entropy alloy coatings[J]. Scripta Materialia, 2020, 178: 477-482. [20] Liu B, Wu J, Cui Y, et al. Structural evolution and superconductivity tuned by valence electron concentration in the Nb-Mo-Re-Ru-Rh high-entropy alloys[J]. Journal of Materials Science and Technology, 2021, 85: 11-17. [21] Loudis J A, Barker I. α- and β-Mn precipitates in the spinodal Fe30Ni20Mn25Al25 alloy[J]. Philosophical Magazine, 2007, 87(35): 5639-5656. [22] Bai L, Liu Y Z, Gao Y Y, et al. Effects of Al addition on microstructure and mechanical properties of Co-free (Fe40Mn40Ni10Cr10)100-xAlx high-entropy alloy[J]. Journal of Alloys and Compounds, 2021, 879: 160342. [23] Zhang J F, Qiu H, Zhu H G, et al. Effect of Al additions on the microstructures and tensile properties of AlxCoCr3Fe5Ni high entropy alloys[J]. Materials Characterization, 2021, 175: 111091. [24] 李子兴, 朱言言, 程 序, 等. Al和Ti含量对激光熔炼AlxNbTiyV轻质高熵合金组织与性能的影响[J]. 材料工程, 2024, 52(1): 137-145. Li Zixing, Zhu Yanyan, Cheng Xu, et al. Effect of Al and Ti content on microstructure and properties of laser melting AlxNbTiyV lightweight high entropy alloy[J]. Journal of Materials Engineering, 2024, 52(1): 137-145. [25] He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62(1): 105-113. [26] Voorheesi P W, Mcfadden G B, Johnson W C, et al. On the morphological development of second-phase particles in elastically-stressed solids[J]. Acta Metallurgica et Materialia, 1992, 40(11): 2979-2992. [27] Liu T F, Tasy J C. Morphology of A12 α-Mn structure[J]. Scripta Metallurgica, 1987, 21: 1213-1218. |