[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6: 299-303. [2] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [3] George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4: 515-534. [4] 骆再斌, 范子泽, 彭 振. 轻质高熵合金的研究进展[J]. 金属热处理, 2022, 47(4): 100-108. Luo Zaibin, Fan Zize, Peng Zhen. Research progress of light-weight high-entropy alloys[J]. Heat Treatment of Metals, 2022, 47(4): 100-108. [5] Ma Y, Zhou X Y, Hao J M, et al. A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates[J]. Advanced Materials, 2021, 33: 2006723. [6] Wang Z H, Yuan J H, Wang Q, et al. Developing novel high-temperature soft-magnetic B2-based multi-principal-element alloys with coherent body-centered-cubic nanoprecipitates[J]. Acta Materialia, 2024, 266: 119686. [7] Lei Z F, Wu Y, He J Y, et al. Snoek-type damping performance in strong and ductile high-entropy alloys[J]. Science Advances, 2020, 6: eaba7802. [8] Wei P C, Liao C N, Wu H J, et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance[J]. Advanced Materials, 2020, 32: 1906457. [9] Senkov O N, Miracle D B, Chaput K J. Development and exploration of refractory high entropy alloys—A review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128. [10] Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5[J]. Acta Materialia, 2019, 168: 222-236. [11] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. [12] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758-1765. [13] Zhang J, Hu Y, Wei, Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders[J]. Journal of Alloys and Compounds, 2020, 827: 154301. [14] Das S, Robi P S. Mechanical alloying of W-Mo-V-Cr-Ta high entropy alloys[J]. IOP Conference Series: Materials Science and Engineering, 2018, 346: 012047. [15] Todai M, Nagase T, Hori T, et al. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials[J]. Scripta Materialia, 2017, 129: 65-68. [16] Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling[J]. Materials Science and Engineering A, 2016, 674: 203-211. [17] Zhang Y, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys[J]. JOM, 2012, 64: 830-838. [18] Huang H L, Wu Y, He J M, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Advanced Materials, 2017, 29: 1701678. [19] Komiya Y, Haginiwa D, Kogo Y, et al. Clarification of phase stability and oxidation mechanism for TiZrHfTaX (X=Ta, Cr) using thermodynamic calculation[J]. Materials Research Society Advances, 2022, 7: 841-847. [20] Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J]. Journal of Alloys and Compounds, 2017, 694: 869-876. [21] Lin C M, Juan C C, Chang C H, et al. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys[J]. Journal of Alloys and Compounds, 2015, 624: 100. [22] Qiao D X, Jiang H, Chang X X, et al. Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys[J]. Materials Science Forum, 2017, 898: 638-642. [23] Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys[J]. Journal of Metals, 2014, 66: 2030-2042. [24] Wang Q, Han J C, Liu Y F, et al. Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy[J]. Scripta Materialia, 2021, 190: 40-45. [25] Jin D M, Wang Z H, Yuan J H, et al. High-strength and energetic Al2Ti6Zr2Nb3Ta3 high entropy alloy containing a cuboidal BCC/B2 coherent microstructure[J]. Journal of Alloys and Compounds, 2023, 931: 167546. [26] Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia, 2014, 68: 214-228. [27] Liu X F, Tian Z L, Zhang X F, et al. “Self-sharpening” tungsten high-entropy alloy[J]. Acta Materialia, 2020, 186: 257-266. [28] Li T, Liu T W, Zhao S T, et al. Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations[J]. Nature Communications, 2023, 14: 3006. [29] Jiang H, Jiang L, Lu Y P, et al. Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys[J]. Materials Science Forum, 2015, 816: 324-329. [30] Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis[J]. Acta Materialia, 2013, 61: 1545-1557. [31] Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters, 2014, 130: 277-280. [32] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. Journal of Materials Science, 2012, 47: 4062-4074. [33] Cui D C, Zhang Y Y, Liu L X, et al. Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy[J]. Journal of Materials Science and Technology, 2023, 157: 11-20. [34] Wang L, Ding J, Chen S S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys[J]. Nature Communications, 2023, 22: 950-957. [35] Senkov O N, Woodward C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Materials Science and Engineering A, 2011, 529: 311-320. [36] Yang C, Aoyagi K, Bian H K, et al. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr[J]. Materials Letters, 2019, 254: 46-49. [37] Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics, 2017, 84: 153-157. [38] Wang Q, Li Z, Pang S J, et al. Coherent precipitation and strengthening in compositionally complex alloys: A review[J]. Entropy, 2018, 20: 878. [39] Pan J Y, Dai T, Lu T, et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering A, 2018, 738: 362-366. [40] Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys[J]. Materials Today, 2021, 46: 28-34. [41] Senkov O N, Crossman B, Rao S I, et al. Mechanical properties of an Al10Nb20Ta15Ti30V5Zr20 A2/B2 refractory superalloy and its constituent phases[J]. Acta Materialia, 2023, 254: 119017. [42] Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy[J]. Materials and Design, 2015, 81: 87. [43] 张 平, 蒋 丽, 杨金学, 等. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 5-26. Zhang Ping, Jiang Li, Yang Jinxue, et al. Research progress in refractory high entropy alloys for nuclear applications[J]. Materials Reports, 2022, 36(14): 5-26. [44] Sadeghilaridjani M, Muskeri S, Pole M, et al. High-temperature nano-indentation creep of reduced activity high entropy alloys based on 4-5-6 elemental palette[J]. Entropy, 2020, 22: 230. [45] Kareer A, Waite J, Li B, et al. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’[J]. Journal of Nuclear Materials, 2019, 526: 151744. [46] Chang S, Tseng K K, Yang T Y, et al. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy[J]. Materials Letters, 2020, 272: 127832. [47] Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy[J]. Journal of Materials Science and Technology, 2019, 35(3): 369-373. [48] Ei-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys[J]. Science Advances, 2019, 5: eaav2002. [49] Byggmästar J, Nordlund K, Djurabekova F. Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: Defects and segregation[J]. Physical Review B, 2021, 104: 104101. [50] Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J]. Nature Communications, 2016, 7: 13564. [51] Xiao Y F, Kuang W H, Xu Y F, et al. Microstructure and oxidation behavior of the CrMoNbTaV high-entropy alloy[J]. Journal of Materials Research, 2019, 34: 301-308. [52] Müeller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys[J]. Corrosion Science, 2019, 159: 108161. [53] Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300 ℃ of refractory TiZrNbHfTa high-entropy alloys containing aluminum[J]. Advanced Engineering Materials, 2018, 20: 1700948. [54] Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition[J]. Journal of Alloys and Compounds, 2016, 688: 468-477. [55] Gorr B, Müeller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition[J]. Oxidation of Metals, 2017, 88: 339-349. [56] 赵太霖, 牛 犇, 王 清, 等. 阻尼合金研究进展[J]. 材料工程, 2024, 52(6): 109-121. Zhao Tailin, Niu Ben, Wang Qing, et al. Research progress in damping alloys[J]. Journal of Materials Engineering, 2024, 52(6): 109-121. [57] 崔小龙, 黄晋英, 刘进明, 等. 材料阻尼测试中影响因素研究[J]. 煤矿工程, 2016, 37(1): 58-60. Cui Xiaolong, Huang Jinying, Liu Jinming, et al. Material damping test analysis of influencing factors[J]. Coal Mine Machinery, 2016, 37(1): 58-60. [58] Zhang Z R, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53[J]. Materials and Design, 2017, 133: 435-443. |