[1] 杨 康, 艾新港, 王志英, 等. 耐磨钢的发展与耐磨性强化[J]. 辽宁科技大学学报, 2024, 47(3): 174-184. Yang Kang, Ai Xingang, Wang Zhiying, et al. Development and wear resistance enhancement of wear-resistant steel[J]. Journal of University of Science and Technology Liaoning, 2024, 47(3): 174-184. [2] 史术华, 高 擎, 钱亚军. 低温回火对低碳马氏体超高强钢组织及力学性能的影响[J]. 矿冶工程, 2023, 43(6): 174-178. Shi Shuhua, Gao Qing, Qian Yajun. Effect of low-temperature tempering on microstructure and mechanical properties of low-carbon martensitic ultra-high strength steel[J]. Mining and Metallurgical Engineering, 2023, 43(6): 174-178. [3] Ha D J, Sung H K, Park J W, et al. Effects of alloying elements on microstructure, hardness, wear resistance, and surface roughness of centrifugally cast high-speed steel rolls[J]. Metallurgical and Materials Transactions A, 2009, 40: 2568-2577. [4] 关志强, 黄维刚, 王 松, 等. 碳含量对低合金耐磨钢组织及耐磨性的影响[J]. 金属热处理, 2012, 37(8): 72-75. Guan Zhiqiang, Huang Weigang, Wang Song, et al. Influence of carbon content on microstructure and abrasive resistance of the low alloy wear resistant steels[J]. Heat Treatment of Metals, 2012, 37(8): 72-75. [5] Bhadeshia H K D H, Honeycombe R W K. Steels: Microstructure and Properties[M]. Butterworth-Heinemann, 2017. [6] 王 纳, 张 宇, 李小宝, 等. Mn和Mo对耐候钢连续冷却转变行为和强度的影响[J]. 金属热处理, 2015, 40(3): 6-10. Wang Na, Zhang Yu, Li Xiaobao, et al. Effects of Mn and Mo on continuous cooling transformation behavior and strength of weathering steel[J]. Heat Treatment of Metals, 2015, 40(3): 6-10. [7] 曹 艺, 王昭东, 吴 迪, 等. Mo和Ni对低合金耐磨钢连续冷却转变的影响[J]. 材料热处理学报, 2011, 32(5): 74-78. Cao Yi, Wang Zhaodong, Wu Di, et al. Effect of Mo and Ni on continuous cooling transformation of low alloy wear-resistant steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(5): 74-78. [8] 许 峰, 陈 前, 林芷民, 等. Nb和Mo对矿用磨球用钢微结构和相变的影响[J]. 金属热处理, 2022, 47(8): 52-57. Xu Feng, Chen Qian, Lin Zhimin, et al. Effect of Nb and Mo on microstructure and phase transformation of steel for mining grinding balls[J]. Heat Treatment of Metals, 2022, 47(8): 52-57. [9] Wang Z, Zhang H, Guo C, et al. Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels[J]. Journal of Materials Science, 2016, 51: 4996-5007. [10] Ning A, Mao W, Chen X, et al. Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering[J]. Metals, 2017, 7(3): 70. [11] 伍逸凡, 常凯歌, 冯雪红, 等. 热膨胀法测45号钢的相变临界温度[J]. 物理试验, 2020, 40(9): 6-9. Wu Yifan, Chang Kaige, Feng Xuehong, et al. Measuring the phase transition temperature of 45 steel by thermal expansion method[J]. Physics Experimentation, 2020, 40(9): 6-9. [12] 陈 鑫, 徐 光, 姚耔杉, 等. NM400马氏体耐磨钢静态CCT曲线[J]. 特殊钢, 2021, 42(3): 63-66. Chen Xin, Xu Guang, Yao Zishan, et al. Static CCT curve of martensite wear-resistant steel NM400[J]. Special Steel, 2021, 42(3): 63-66. [13] 李春辉, 李晓源, 尉文超, 等. 冷却速度对超高强马氏体钢的马氏体相变起始温度和硬度的影响[J]. 金属热处理, 2022, 47(7): 183-189. Li Chunhui, Li Xiaoyuan, Yu Wenchao, et al. Effect of cooling rate on martensitic transformation initiation temperature and hardness of super high strength martensitic steel[J]. Heat Treatment of Metals, 2022, 47(7): 183-189. [14] 刘 敏, 郑志鹏, 甘利红, 等. 桁架用Nb-Mo微合金中锰钢强化机理及碳化物析出行为[J]. 金属热处理, 2024, 49(3): 198-203. Liu Min, Zheng Zhipeng, Gan Lihong, et al. Strengthening mechanism and carbide precipitation behavior of Nb-Mo microalloyed medium manganese steel for crossing frame truss[J]. Heat Treatment of Metals, 2024, 49(3): 198-203. [15] 刘 旋, 陈雨琳, 陆 兴, 等. 不同碳含量碳钢淬火态马氏体精细结构[J]. 材料热处理学报, 2018, 39(7): 86-91. Liu Xuan, Chen Yulin, Lu Xing, et al. Martensitic substructure in quenched carbon steels with different carbon contents[J]. Transactions of Materials and Heat Treatment, 2018, 39(7): 86-91. [16] 王 鑫, 李昭东, 周世同, 等. 低碳马氏体钢中多尺度板条结构界面的强化效果[J]. 金属热处理, 2018, 43(3): 50-56. Wang Xin, Li Zhaodong, Zhou Shitong, et al. Strengthening effect of multiscale lath structure interface in low carbon martensite steel[J]. Heat Treatment of Metals, 2018, 43(3): 50-56. [17] Shibata A, Nagoshi T, Sone M, et al. Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test[J]. Materials Science and Engineering A, 2010, 527(29/30): 7538-7544. [18] Du C, Hoefnagels J P M, Vaes R, et al. Block and sub-block boundary strengthening in lath martensite[J]. Scripta Materialia, 2016, 116: 117-121. [19] 彭 松, 王荣吉, 周 童, 等. Fe-Mn-C-Al系TWIP钢拉伸过程中的加工硬化行为[J]. 机械工程材料, 2024, 48(2): 68-73. Peng Song, Wang Rongji, Zhou Tong, et al. Work hardening behavior of Fe-Mn-C-Al series TWIP steel during tensile process[J]. Materials for Mechanical Engineering, 2024, 48(2): 68-73. [20] 王 垚, 李春福, 林元华, 等. 10CrMnMoSi双相钢临界区淬火组织的电子结构参数及强度计算[J]. 金属热处理, 2016, 41(10): 6-11. Wang Yao, Li Chunfu, Lin Yuanhua, et al. Calculation of electronic structure parameters and strength of 10CrMnMoSi dual-phase steel after subcritical quenching[J]. Heat Treatment of Metals, 2016, 41(10): 6-11. |