[1] 张九高, 姜建鸿, 骆 鹏, 等. 动车组高强度螺栓质量分析[J]. 热处理技术与装备, 2019, 40(2): 52-58. Zhang Jiugao, Jiang Jianhong, Luo Peng, et al. Quality analysis of high strength bolts for CRH train[J]. Heat Treatment Technology and Equipment, 2019, 40(2): 52-58. [2] 燕友增. 高强度螺栓的应用研究[D]. 青岛: 山东科技大学, 2012. Yan Youzeng. Study on the application of high-strength bolts[D]. Qingdao: Shandong University of Science and Technology, 2012. [3] 王刘涛. 高强螺栓用42CrMo钢轧制工艺研究[D]. 马鞍山: 安徽工业大学, 2017. Wang Liutao. Research on the rolling technology of high strength 42CrMo steel for bolts manufacturing[D]. Maanshan: Anhui University Technology, 2017. [4] 惠卫军, 董 瀚, 翁宇庆. 耐延迟断裂高强度螺栓钢的研究开发[J]. 钢铁, 2001, 36(3): 69-73. Hui Weijun, Dong Han, Weng Yuqing. Development of high strength bolt steels with high delayed fracture resistance[J]. Iron and Steel, 2001, 36(3): 69-73. [5] 李 瑞, 马 恒, 周相海, 等. 平均应力对6.8级螺栓材料的高周疲劳行为的影响[J]. 材料热处理学报, 2019, 40(4): 62-67. Li Rui, Ma Heng, Zhou Xianghai, et al. Influence of average stress on high-cycle fatigue behavior of 6.8 grade bolt material[J]. Transactions of Materials and Heat Treatment, 2019, 40(4): 62-67. [6] 史根豪, 朱思远, 王青峰, 等. 12.9级调质耐候螺栓钢的淬火温度优化[J]. 材料热处理学报, 2022, 43(4): 124-130. Shi Genhao, Zhu Siyuan, Wang Qingfeng, et al. Quenching temperature optimization of grade 12.9 quenched and tempered weathering bolt steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(4): 124-130. [7] 代发明, 蒋 欣, 王凌旭, 等. 回火温度对35CrMo钢显微组织和力学性能的影响[J]. 机械工程材料, 2018, 42(9): 73-77. Dai Faming, Jiang Xin, Wang Lingxu, et al. Effect of tempering temperature on microstructure and mechanical properties of 35CrMo steel[J]. Materials for Mechanical Engineering, 2018, 42(9): 73-77. [8] 张欢欢, 朱思远, 王 倩, 等. 12.9级高强度耐候螺栓钢的抗氢致延迟断裂性能[J]. 上海金属, 2022, 44(2): 42-46. Zhang Huanhuan, Zhu Siyuan, Wang Qian, et al. Hydrogen-induced delayed fracture resistance of 12.9 grade high strength weathering bolt steel[J]. Shanghai Metals, 2022, 44(2): 42-46. [9] Tada M, Kikuchi K, Tomita K, et al. Hydrogen absorption and desorption of steel in the high strength bolt manufacturing[J]. ISIJ International, 2012, 52(2): 281-285. [10] Kuduzovic A, Poletti M C, Sommitsch C, et al. Investigations into the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners[J]. Materials Science and Engineering A, 2014, 590(10): 66-73. [11] 刘湘江, 赵晓丽, 惠卫军. 含Ni高强度螺栓钢氢致延迟断裂行为研究[J]. 上海金属, 2018, 40(4): 40-46. Liu Xiangjiang, Zhao Xiaoli, Hui Weijun. Study on the hydrogen-induced delayed fracture behavior of Ni-bearing high strength bolt steel[J]. Shanghai Metals, 2018, 40(4): 40-46. [12] Huan Y, Wei Y, Gao W C, et al. Accelerated transformation of hot deformed austenite in SCM435 steel[J]. Materials Science Forum, 2020, 993: 541-549. [13] 李鸿娟, 向成功, 吴 琼, 等. 淬火与回火工艺对42CrMo钢显微组织和奥氏体晶粒长大规律的影响[J]. 金属热处理, 2023, 48(1): 181-185. Li Hongjuan, Xiang Chenggong, Wu Qiong, et al. Effect of quenching and tempering process on microstructure and austenite grain growth of 42CrMo steel[J]. Heat Treatment of Metals, 2023, 48(1): 181-185. [14] 王利军, 吕彦新, 阮士朋, 等. 初始组织对SCM435钢调质处理后力学性能的影响[J]. 材料热处理学报, 2019, 40(6): 117-122. Wang Lijun, Lü Yanxin, Ruan Shipeng, et al. Effect of initial microstructure on mechanical properties of SCM435 steel after quenching and tempering[J]. Transactions of Materials and Heat Treatment, 2019, 40(6): 117-122. [15] 杨小禹, 李笑笑, 佟 静, 等. 高压热处理对35CrMo钢组织与硬度的影响[J]. 金属热处理, 2022, 47(6): 119-122. Yang Xiaoyu, Li Xiaoxiao, Tong Jing, et al. Effect of high pressure heat treatment on microstructure and hardness of 35CrMo steel[J]. Heat Treatment of Metals, 2022, 47(6): 119-122. [16] 惠卫军, 董 瀚, 王毛球, 等. 1300 MPa级高强度螺栓钢[J]. 钢铁, 2002, 37(3): 37-42. Hui Weijun, Dong Han, Wang Maoqiu, et al. New high strength steel for bolts with tensile strength over 1300 MPa[J]. Iron and Steel, 2002, 37(3): 37-42. [17] 莫精忠, 杨 周, 毛向阳, 等. 正火预处理对42CrMoVNb高强度螺栓钢耐延迟断裂性能的影响[J]. 上海金属, 2020, 42(6): 5-8, 14. Mo Jingzhong, Yang Zhou, Mao Xiangyang, et al. Effect of normalizing pretreatment on delayed fracture resistance of 42CrMoVNb high strength bolt steel[J]. Shanghai Metals, 2020, 42(6): 5-8, 14. |