[1] 师昌绪, 仲增墉. 我国高温合金的发展与创新[J]. 金属学报, 2010, 46(11): 1281-1288. Shi Changxu, Zhong Zengyong. Development and innovation of superalloy in China[J]. Acta Metallurgica Sinica, 2010, 46(11): 1281-1288. [2] 冯 涤, 李尚平, 骆合力, 等. 改性铸造Ni3Al基合金MX246组织与性能研究[J]. 金属学报, 2002, 38(11): 1181-1185. Feng Di, Li Shangping, Luo Heli, et al. Microstructure and properties of modified cast Ni3Al-base MX246 alloys[J]. Acta Metallurgica Sinica, 2002, 38(11): 1181-1185. [3] Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361-374. [4] 张喜娥, 骆合力, 曹 栩, 等. Ni3Al基合金复杂薄壁件精铸过程数值模拟[J]. 铸造, 2005, 54(10): 992-995. Zhang Xi'e, Luo Heli, Cao Xu, et al. Solidification simulation of complex Ni3Al thin wall castings[J]. Foundry, 2005, 54(10): 992-995. [5] 王建涛, 韩 伟, 骆合力, 等. 均匀化处理对MX246A合金组织和拉伸性能的影响[J]. 材料热处理学报, 2014, 35(4): 162-165. Wang Jiantao, Han Wei, Luo Heli, et al. Effect of homogenization on microstructure and tensile property of MX246A alloy[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 162-165. [6] 王建涛, 骆合力, 李尚平, 等. 固溶处理对MX246A合金持久性能的影响[J]. 热加工工艺, 2010, 39(12): 155-161. Wang Jiantao, Luo Heli, Li Shangping, et al. Effect of solution treatment on stress rupture property of MX246A alloy[J]. Hot Working Technology, 2010(12): 155-161. [7] Franco Correa J C, Martinez Franco E, Alvarado Orozco J M, et al. Effect of conventional heat treatments on the microstructure and microhardness of IN718 obtained by wrought and additive manufacturing[J]. Journal of Materials Engineering and Performance, 2021, 30: 7035-7045. [8] 张雷雷, 陈晶阳, 任晓冬, 等. 固溶参数对镍基高温合金K439B显微组织及力学性能的影响[J]. 材料工程, 2024, 52(4): 120-126. Zhang Leilei, Chen Jingyang, Ren Xiaodong, et. Effect of solution parameters on microstructures and mechanical properties of K439B nickel-based superalloy[J]. Journal of Materials Engineering, 2024, 52(4): 120-126. [9] 夏鹏成, 于金江, 孙晓峰, 等. 固溶温度对DZ951镍基高温合金组织和持久性能的影响[J]. 材料工程, 2009, 37(9): 1-4. Xia Pengcheng, Yu Jinjiang, Sun Xiaofeng, et al. Influence of solution temperature on microstructure and stress rupture property of DZ951 nickel-base superalloy[J]. Journal of Materials Engineering, 2009, 37(9): 1-4. [10] Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy[J]. Materials Characterization, 2011, 62(9): 878-886. [11] Deng W K, Zhang D, Wu H Y, et al. Prediction of yield strength in a polycrystalline nickel base superalloy during interrupt cooling[J]. Scripta Materialia, 2020, 183: 139-143. [12] 胥国华, 焦兰英, 张北江, 等. 固溶冷却速度对GH4586合金组织及850 ℃拉伸性能的影响[J]. 材料热处理学报, 2006, 27(2): 47-49. Xu Guohua, Jiao Lanying, Zhang Beijiang, et al. Effect of cooling rate after solid solution on microstructure and tensile properties of GH4586 superalloy at 850 ℃[J]. Transactions of Materials and Heat Treatment, 2006, 27(2): 47-49. [13] Qin X Z, Guo J T, Yuan C, et al. Effects of long-term thermal exposure on the microstructure and properties of a cast Ni base superalloy[J]. Metallurgical and Materials Transactions A, 2007, 38: 3014-3022. |