[1] Yang S S, Xue L, Lu W B, et al. Experimental study on the mechanical strength and dynamic strain aging of Inconel 617 using small punch test[J]. Journal of Alloys and Compounds, 2020, 815: 152-447. [2] Gui Y, Liang Z, Shao H, et al. Corrosion behavior and life time prediction of VM12, Sanicro 25 and Inconel 617 in supercritical carbon dioxide at 600 ℃[J]. Corrosion Science, 2020, 175: 108870. [3] Athreya C N, Deepak K, Kim D, et al. Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617[J]. Journal of Alloys and Compounds, 2019, 778: 224-233. [4] Zhong Y, Liu X, Lan K C, et al. On the biaxial thermal creep-fatigue behavior of Ni-base alloy 617 at 950 ℃[J]. International Journal of Fatigue, 2020, 139: 105787. [5] Grierson D S, Cao G, Brooks P, et al. Creep crack growth behavior of alloys 617 and 800H in air and impure helium environments at high temperatures[J]. Metallurical and materials Transactions E, 2017, 4(1): 1-9. [6] Kim W G, Park J Y, Ekaputra I M W, et al. Analysis of creep behavior of alloy 617 for use of VHTR system[J]. Procedia Material Science, 2014, 3(1): 1285-1290. [7] 朱怀沈, 聂义宏, 赵 帅, 等. 镍基617 合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46 (6): 80-87. Zhu Huaishen, Nie Yihong, Zhao Shuai, et al. Microstructure evolution and prediction of alloy 617 during hot deformation based on dynamic recrystallization[J]. Journal of Materials Engineering, 2018, 46(6): 80-87. [8] 田仲良, 陈正宗, 何西扣, 等. 固溶处理对超超临界电站用镍基耐热合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 97-102. Tian Zhongliang, Chen Zhengzong, He Xikou, et al. Effect of solution treatment on microstructure and mechanical properties of heat-resisting Ni-based alloy used for ultra-supercritical power plant[J]. Heat Treatment of Metals, 2020, 45(3): 97-102. [9] 杨 康, 祝志超, 张雪姣, 等. 镍基617 合金的热变形和动态再结晶行为[J]. 材料热处理学报, 2019, 40(10): 151-157. Yang Kang, Zhu Zhichao, Zhang Xuejiao, et al. Hot deformation and dynamic recrystallization behavior of nickel-based alloy 617[J]. Transactions of Materials and Heat Treatment, 2019, 40(10): 151-157. [10] Mandal S, Jayalakshmi M, Bhaduri A, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N)[J]. Metallurgical and Materials Transactions A, 2014, 45(12): 5645-5656. [11] 王蓬书, 李琴敏, 韦贤毅, 等. 固溶对GH4169合金晶粒尺寸与力学性能的影响[J]. 热加工工艺, 2018, 47(4): 245-249. Wang Pengshu, Li Qinmin, Wei Xianyi, et al. Effect of solid solution on grain size and mechanical properties of GH4169 alloy[J]. Hot Working Technology, 2018, 47(4): 245-249. [12] 连轶博, 杨春雷, 王国栋, 等. 固溶处理对GH4080A合金微观组织的影响[J]. 金属热处理, 2022, 47(4): 46-52. Lian Yibo, Yang Chunlei, Wang Guodong, et al. Effect of heat treatment on the microstructure of GH4080A alloy[J]. Heat Treatment of Metals, 2022, 47(4): 46-52. [13] 杨春雷, 沈海军, 王国栋, 等. GH4169合金固溶及冷拉过程的微观组织演变行为[J]. 金属热处理, 2023, 48(10): 231-238. Yang Chunlei, Sheng Haijun, Wang Guodong, et al. Microstructure evolution behavior of GH4169 alloy during solution and cold drawing process[J]. Heat Treatment of Metals, 2023, 48(10): 231-238. [14] Padilha A F, Plaut R L, Rios P R. Annealing of cold-worked austenitic stainless steels[J]. ISIJ International, 2003, 43(2): 135-143. [15] 崔忠圻. 金属学与热处理[M]. 北京: 机械工业出版社, 2007. [16] 米大为. 固溶温度对GH5605高温合金组织和力学性能的影响[J]. 金属热处理, 2018, 43(12): 191-194. Mi Dawei. Effect of solution treatment temperature on microstructure and mechanical properties of GH5605 superalloy[J]. Heat Treatment of Metals, 2018, 43(12): 191-194. |