[1] Klöwer J. "Alloy 617 and Derivatives." Materials for Ultra-supercritical and Advanced Ultra-supercritical Power Plants[M]. London: Woodhead Publishing, 2017: 547. [2] Eiselstein H L, Hosier J C. Nickel-chromium-cobalt-molybdenum alloys: US3859060A[P]. 1975-01-07. [3] 杨华春, 林富生, 谢锡善, 等. 欧洲700 ℃发电机组研发及617合金研究进展[J]. 发电设备, 2012, 26(5): 355-359. Yang Huachun, Lin Fusheng, Xie Xishan, et al. R&D progress of 700 ℃ power generation technology and alloy 617 in Europe[J]. Power Equipment, 2012, 26(5): 355-359. [4] Klöwer J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 ℃ power plants[J]. Procedia Engineering, 2013, 55: 226-231. [5] Maier G Mikrostruktur. Verformung und lebensdauer der legierung alloy 617B -Experimente, modelle und bauteilvorhersagen[D]. Shaker: Karlsruher Institut für Technologie, 2013. [6] Perry A C. Hot deformation processing and microstructural evolution of alloy 617[D]. Golden: Colorado School of Mines, 1995. [7] Rahman M S, Priyadarshan G, Raja K S, et al. Characterization of high temperature deformation behavior of INCONEL 617[J]. Mechanics of Materials, 2009, 41(3): 261-270. [8] 朱怀沈, 聂义宏, 白亚冠, 等. 基于热加工图的700 ℃超超临界转子用617合金变形行为研究[J]. 大型铸锻件, 2013(4): 9-13. Zhu Huaishen, Nie Yihong, Bai Yaguan, et al. Research on the deformation behavior of alloy 617 used for 700 ℃ ultra-super-critical rotors based on hot working drawing[J]. Heavy Casting Forging, 2013(4): 9-13. [9] 郭宏钢, 王 岩, 李 阳. 617B镍基高温合金铸态组织热变形行为研究[J]. 热加工工艺, 2013, 42(24): 51-53. Guo Honggang, Wang Yan, Li Yang. Research on hot deformation behavior of as-cast structure of 617B nickel-based superalloy[J]. Hot Working Technology, 2013, 42(24): 51-53. [10] 陈正宗, 刘正东, 包汉生. 铸态耐热合金CN617热变形行为研究[J]. 金属热处理, 2014, 39(11): 68-72. Chen Zhengzong, Liu Zhengdong, Bao Hansheng. Hot deformation behavior and processing maps of CN617 nickel-based heat-resistant alloy ingot[J]. Heat Treatment of Metals, 2014, 39(11): 68-72. [11] Jiang H, Dong J, Zhang M, et al. Hot deformation characteristics of Alloy 617B nickel-based superalloy: A study using processing map[J]. Journal of Alloys and Compounds, 2015, 647: 338-350. [12] Babu K A, Mandal S, Kumar A, et al. Characterization of hot deformation behavior of alloy 617 through kinetic analysis, dynamic material modeling and microstructural studies[J]. Materials Science and Engineering A, 2016, 664: 177-187. [13] Mankins W L, Hosier J C, Bassford T H. Microstructure and phase stability of Inconel alloy 617[J]. Metallurgical Transactions, 1974, 5(12): 2579-2590. [14] Cabibbo M, Gariboldi E, Spigarelli S, et al. Creep behavior of INCOLOY alloy 617[J]. Journal of Materials Science, 2008, 43: 2912-2921. [15] Tan L, Yang Y, Nanstad R K, et al. Effect of thermal aging on coarsening kinetics of γ' in alloy 617[J]. Journal of Phase Equilibria and Diffusion, 2014, 35: 524-529. [16] Roy A K, Hasan M H, Pal J. Creep deformation of Alloys 617 and 276 at 750-950 ℃[J]. Materials Science and Engineering A, 2009, 520(1/2): 184-188. [17] Speicher M, Kauffmann F, Shim J H, et al. Microstructure evolution in Alloy 617 B after a long-term creep and thermal aging at 700 ℃[J]. Materials Science and Engineering A, 2018, 711: 165-174. [18] Guo Y, Wang B, Hou S. Aging precipitation behavior and mechanical properties of Inconel 617 superalloy[J]. Acta Metallurgica Sinica (English Letters), 2013, 26: 307-312. [19] 陈正宗, 刘正东, 包汉生. 固溶处理对CN617耐热合金组织和硬度的影响[J]. 金属热处理, 2014, 39(12): 27-30. Chen Zhengzong, Liu Zhengdong, Bao Hansheng. Effects of solution treatment on microstructure and hardness of heat-resistant alloy CN617[J]. Heat Treatment of Metals, 2014, 39(12): 27-30. [20] 陈正宗, 刘正东, 包汉生, 等. 固溶温度对新型耐热合金晶界特性的影响[J]. 金属热处理, 2017, 42(1): 31-34. Chen Zhengzong, Liu Zhengdong, Bao Hansheng, et al. Effect of solution temperature on grain boundary character in new heat-resistant alloy[J]. Heat Treatment of Metals, 2017, 42(1): 31-34. [21] 田仲良, 陈正宗, 何西扣, 等. 固溶处理对超超临界电站用镍基耐热合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 97-102. Tian Zhongliang, Chen Zhengzong, He Xikou, et al. Effect of solution treatment on microstructure and mechanical properties of heat-resisting Ni-based alloy used for ultra-supercritical power plant[J]. Heat Treatment of Metals, 2020, 45(3): 97-102. [22] Dong C, Liu Z, Chen Z, et al. Carbide dissolution and grain growth behavior of a nickel-based alloy without γ' phase during solid solution[J]. Journal of Alloys and Compounds, 2020, 825: 154106. [23] 李 其, 陈正宗, 蒋新亮, 等. 固溶温度对改型In617合金组织和性能的影响[J]. 金属热处理, 2021, 46(8): 109-115. Li Qi, Chen Zhengzong, Jiang Xinliang, et al. Effect of solution treatment temperature on microstructure and properties of modified In617 alloy[J]. Heat Treatment of Metals, 2021, 46(8): 109-115. [24] 刘昱君, 程晓农, 罗 锐, 等. 热处理工艺对Inconel 617合金管组织性能的影响[J]. 金属热处理, 2022, 47(2): 173-177. Liu Yujun, Cheng Xiaonong, Luo Rui, et al. Effect of heat treatment process on microstructure and properties of Inconel 617 alloy tube[J]. Heat Treatment of Metals, 2022, 47(2): 173-177. [25] McCoy H E, King J F. Mechanical properties of Inconel 617 and 618[R]. Tennessee: Oak Ridge NationalLaboratory, 1985. [26] Akbari-Garakani M, Mehdizadeh M. Effect of long-term service exposure on microstructure and mechanical properties of Alloy 617[J]. Materials & Design, 2011, 32(5): 2695-2700. [27] Benz J, Lillo T, Wright R. Aging of Alloy 617 at 650 and 750 ℃[R]. Idaho Falls: Idaho NationalLaboratory, 2013. [28] Wang Z, Muránsky O, Zhu H, et al. On the kinetics of gamma prime (γ') precipitation and its strengthening mechanism in Alloy 617 during a long-term thermal aging[J]. Materialia, 2020, 11: 100682. [29] 郭 岩, 周荣灿, 侯淑芳, 等. 617合金760 ℃时效组织结构及力学性能分析[J]. 中国电机工程学报, 2010, 30(26): 86-89. Guo Yan, Zhou Rongcan, Hou Shufang, et al. Analysis of microstructure and mechanical properties of alloy 617 aged at 760 ℃[J]. Proceedings of the CSEE, 2010, 30(26): 86-89. [30] 郭 岩, 侯淑芳, 周荣灿. 晶界M23C6碳化物对IN617合金力学性能的影响[J]. 动力工程学报, 2010, 30(10): 804-808. Guo Yan, Hou Shufang, Zhou Rongcan. Effect of grain-boundary M23C6 carbides on mechanical properties of Inconel alloy 617[J]. Chinese Journal of Power Engineering, 2010, 30(10): 804-808. [31] Yan G U O, Zhang Z, Zhou R, et al. Microstructure and mechanical properties of alloy 617B[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1106-1113. [32] Singh A N, Moitra A, Bhaskar P, et al. Study of aging-induced degradation of fracture resistance of Alloy 617 toward high-temperature applications[J]. Metallurgical and Materials Transactions A, 2017, 48: 3269-3278. [33] Wright R N. Summary of studies of aging and environmental effects on Inconel 617 and Haynes 230[R]. Idaho Falls: Idaho National Laboratory, 2006. [34] 郭 岩, 侯淑芳, 王博涵, 等. 固溶强化型镍基合金的时效析出行为[J]. 中国电力, 2013, 46(9): 34-38. Guo Yan, Hou Shufang, Wang Bohan, et al. Aging precipitation behavior of solid-solution strengthened nickel-base alloys[J]. Electric Power, 2013, 46(9): 34-38. [35] 杨 权, 谭舒平. 617合金的组织稳定性[J]. 钢铁, 2014(2): 60-64. Yang Quan, Tan Shuping. Analysis for the microstructure stability of alloy 617[J]. Iron Steel, 2014(2): 60-64. [36] Jiang H, Dong J, Zhang M. Phase transformation of alloy 617B during 10 000 h aging: An element redistribution-related process[J]. Journal of Alloys and Compounds, 2018, 765: 586-594. [37] Jiang H, Xiang X M, Dong J X. The relationship between microstructure evolution and impact toughness degeneration of alloy 617B during long term aging[J]. Journal of Materials Research and Technology, 2022, 17: 809-818. [38] Zhang Z, Ding R, Liu C, et al. The precipitates evolution with related element interaction and redistribution during long-term high-temperature aging of Alloy 617[J]. Materials Characterization, 2023, 199: 112783. [39] 江 河, 董建新, 张麦仓, 等. 700 ℃超超临界锅炉管用617B合金时效组织演变[J]. 稀有金属材料与工程, 2016, 45(4): 982-989. Jiang He, Dong Jianxin, Zhang Maicang, et al. Microstructure evolution during aging of alloy 617B for 700 ℃ ultra-supercritical boiler pipe[J]. Rare Metal Materials and Engineering, 2016, 45(4): 982-989. [40] 张 凯, 师梦杰, 郑合凤, 等. Inconel 617合金中第二相的析出规律研究[J]. 原子能科学技术, 2019, 53(12): 2428-2434. Zhang Kai, Shi Mengjie, Zheng Hefeng, et al. Precipitation mechanism of secondary phase in Inconel 617 alloy[J]. Atomic Energy Science and Technology, 2019, 53(12): 2428-2434. [41] 董 陈. 固溶强化型耐热合金C-HRA-2的组织与性能研究[D]. 北京: 北京科技大学, 2020. [42] Bagui S, Mandal M, Sahoo B K, et al. Investigation of non-classical creep behavior of Inconel 617 alloy at 700 ℃ and 800 ℃ through interrupted tests and microstructural characterizations[J]. Materials Science and Engineering A, 2022, 832: 142474. [43] Choi J, Neto L B, Wright R N, et al. On the prediction of creep behaviour of alloy 617 using Kachanov-Rabotnov model coupled with multi-objective genetic algorithm optimisation[J]. International Journal of Pressure Vessels and Piping, 2022, 199: 104721. [44] Kim W G, Yin S N, Lee G G, et al. Creep oxidation behaviour and creep strength prediction for Alloy 617[J]. International Journal of Pressure Vessels and Piping, 2010, 87(6): 289-295. [45] Bullough C, Krein R, Lombardi P, et al. Development of an ECCCinterim creep rupture datasheet for Alloy 617B using a strength averaging and blending approach[C]//Proceedings of the 4th International ECCC Creep & Fracture Conference. New Düsseldorf: ECCC, 2017: 10. [46] Wright J K, Wright R N. Creeprupture of pressurized Alloy 617 tubes[R]. Idaho Falls: Idaho National Laboratory, 2013. [47] Dong C, Chen Z, Zhao Y, et al. Microstructure characterization and strengthening behavior of a non-γ' phase nickel-based alloy C-HRA-2 after creep at 650 ℃[J]. Materials Today Communications, 2023, 34: 104980. [48] Abe F, Tabuchi M, Hayakawa M. Influence of data scattering on estimation of 100, 000 hrs creep rupture strength of alloy 617 at 700 ℃ by Larson-Miller method[J]. Journal of Pressure Vessel Technology, 2017, 139(1): 011403. [49] Neidel A, Riesenbeck S. Pitting corrosion induced fatigue fracture on a gas turbine compressor blade[J]. Practical Metallography, 2012, 49(1): 35-48. [50] Fink C, Zinke M, Keil D. Evaluation of hot cracking susceptibility of nickel-based alloys by the PVR test[J]. Welding in the World, 2012, 56: 37-43. [51] Kumar G P, Balasubramanian K R. Experimental investigation on high-temperature tensile behavior of cold metal transfer pulse multi-control welding of Inconel 617 alloy[J]. Results in Surfaces and Interfaces, 2023, 10: 100100. [52] Sirohi S, Kumar N, Kumar A, et al. Metallurgical characterization and high-temperature tensile failure of Inconel 617 alloy welded by GTAW and SMAW—A comparative study[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237(9): 2046-2067. [53] Kumar A, Pandey C. Development and evaluation of dissimilar gas tungsten arc-welded joint of P92 steel/Inconel 617 alloy for advanced ultra-supercritical boiler applications[J]. Metallurgical and Materials Transactions A, 2022, 53(9): 3245-3273. [54] 王 安. ALLOY 617B焊接接头焊态和热处理态的微观组织研究[J]. 锅炉技术, 2020, 51(2): 53-56. Wang An. Research of microstructure of alloy 617B as welded and heat-treated weld joints[J]. Boiler Technology, 2020, 51(2): 53-56. |