[1] 孙晓峰, 金 涛, 周亦胄, 等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1-11. Sun Xiaofeng, Jin Tao, Zhou Yizhou, et al. Research progress of nickel-base single crystal superalloys[J]. Materials China, 2012, 31(12): 1-11. [2] Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science and Technology, 1999, 3(8): 513-523. [3] Xia Wanshun, Zhao Xinbao, Yue Liang, et al. A review of composition evolution in Ni-based single crystal superalloys[J]. Journal of Materials Science & Technology, 2020, 44: 76-95. [4] Long Haibo, Mao Shengcheng, Liu Yinong, et al. Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy[J]. Acta Materialia, 2020, 185: 233-244. [5] Long Haibo, Liu Yinong, Mao Shengcheng, et al. Minimum interface misfit criterion for the precipitation morphologies of TCP phases in a Ni-based single crystal superalloy[J]. Intermetallics, 2018, 94: 55-64. [6] 朱 鸥, 李玉龙, 张 燕, 等. 航空发动机用单晶铸造高温合金热处理工艺[J]. 铸造技术, 2013, 34(9): 1137-1140. Zhu Ou, Li Yulong, Zhang Yan, et al. Heat treatment progress for single-crystal superalloys used in aeroengines[J]. Foundry Technology, 2013, 34(9): 1137-1140. [7] 杨姗洁, 郝志博, 袁晓飞. DD494合金叶片返回料的热处理[J]. 金属热处理, 2024, 29(6): 1-7. Yang Shanjie, Hao Zhibo, Yuan Xiaofei. Heat treatment for recycled material of DD494 alloy turbine blade[J]. Heat Treatment of Metals, 2024, 29(6): 1-7. [8] Fuchs G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy[J]. Materials Science and Engineering A, 2001, 300(1-2): 52-60. [9] Acharya M V, Fuchs G E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys[J]. Materials Science and Engineering A, 2004, 381: 143-153. [10] Fuchs G E. Improvement of creep strength of a third generation, single crystal Ni-base superalloy by solution heat treatment[J]. Journal of Materials Engineering and Performance, 2002, 11: 19-25. [11] Yu JinJiang, Sun Xiaofeng, Zhao Nairen, et al. Effect of heat treatment on microstructure and stress rupture life of DD32 single crystal Ni-base superalloy[J]. Materials Science and Engineering A, 2007, 460: 420-427. [12] Pang H T, Stone H J, Rae C M F, et al. Solution heat treatment optimization of fourth-generation single-crystal nickel-base superalloys[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3264-3282. [13] 赵新宝, 岳 亮, 夏万顺, 等. 固溶处理对一种第四代镍基单晶高温合金微观组织和偏析的影响[J]. 电子显微学报, 2020, 39(5): 462-469. Zhao Xinbao, Yue Liang, Xia Wanshun, et al. The influence of solution treatment temperature on the microstructure and microstructure of a fourth generation nickel-based single crystal superalloy[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(5): 462-469. [14] Zhang Yanbin, Liu Lin, Huang Taiwen, et al. Investigation on a ramp solution heat treatment for a third generation nickel-based single crystal superalloy[J]. Journal of Alloys and Compounds, 2017, 723: 922-929. [15] Hegde S R, Kearsey R M, Beddoes J C. Designing homogenization-solution heat treatments for single crystal superalloys[J]. Materials Science and Engineering A, 2010, 527(21): 5528-5538. [16] Zhang J X, Murakumo T, Harada H, et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138[J]. Scripta Materialia, 2023, 48: 287-293. |